Appendix A.5.1.5

Phase 3 Contract 2

N6 Galway City Transport Project Phase 3 Ground Investigation Contract 2,

October 2015 to January 2016

<u>A.5.1.5</u>

Frost Heave

Dublin 3 Ireland VAT No: 9D539711

Contract: Lackagh Quarry

TEST REQUIREMENTS:

Date: 16 March 2016 Test Report Ref: STR 448032

Page 1 of 2

LABORATORY TEST REPORT

No

To determine the Frost Heave of Unbound Aggregate in accordance with **BS 812: Part 124: 2009 - Annex B (Use of Comparator Specimens)**

SAMPLE DETAILS:

- Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification
- S56595 Bulk Samples Unknown 18/01/2016 24/02/2016 Unknown Lackagh Quarry Unknown Client Aggregate SHW Series 800: clause 801.8

RESULTS:

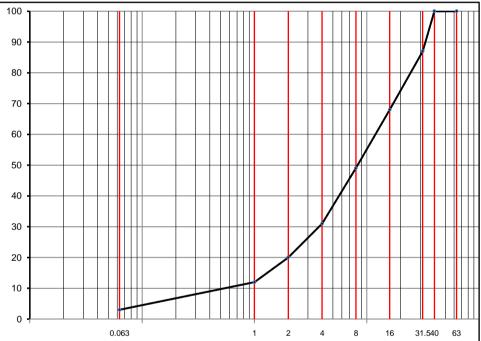
Were any unrepresentative lumps present? No

Frost Heave Test Result:

Maximum Heave Observed in 96 hours (mm)		
Comparator Specimen 1	11.5	(nearest 0.5mm)
Comparator Specimen 2	12.0	(nearest 0.5mm)
Comparator Specimen 3	12.0	(nearest 0.5mm)
Mean	11.8	(nearest 0.1mm)
Test Specimen 1	3.5	(nearest 0.5mm)
Test Specimen 2	2.0	(nearest 0.5mm)
Test Specimen 3	4.5	(nearest 0.5mm)
Mean Frost Heave	3.3	(nearest 0.1mm)

In accordance with SHW Series 800: clause 801.8 the sample is classified as being Non Frost Susceptible (mean frost heave ≤ 15mm)

Test Report Ref: STR 448032 Page 2 of 2


RESULTS CONTINUED:

Laboratory Dry Density & Water Content Test Result

Maximum Dry Density	2.18 Mg/m3
Optimum Water Content	6.5 %
Actual Dry Density	2.18 Mg/m3
Actual Water Content	6.5 %

Particle Size Distribution Test Result

BS Test Sieve Nominal Apperature	As Received Test Portion % Passing	Stable Test Portion % Passing	
63.0 mm	100	100	
40.0 mm	100	100	
31.5 mm	87	87	
16.0 mm	68	68	
8.0 mm	49	49	
4.0 mm	31	31	
2.0 mm	20	20	
1.0 mm	12	12	
0.063 mm	3	3	

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager Approved by: - Elfeulden Eric Goulden Technical Manager

Los Angeles Coefficient

VAT No: 9D539711

Dublin 3 Ireland Date: 29 February 2016 Test Report Ref: STR 448029

Page 1 of 1

LABORATORY TEST REPORT

No

TEST REQUIREMENTS:

Contract: Lackagh Quarry

To determine the Fragmentation of Aggregate - Los Angeles Test Method in accordance with **BS EN 1097-2: 2010**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification:

S56595 Bulk Sample Unknown 18/01/2016 21/02/2016 Unknown Lackagh Quarry Unknown Client Aggregate N/A

RESULTS:

Size fraction from which the test portion was obtained:		14mm to 12.5mm
		12.5mm to 10.0mm
Los Angeles Coefficient (LA) =	28	

<u>Comments</u>

None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager Approved by: - Elipsidem

Eric Goulden Technical Manager

Magnesium Sulphate Soundness

VAT No: 9D539711

Dublin 3 Ireland Date: 29 February 2016 Test Report Ref: STR 448030

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

Contract: Lackagh Quarry

To determine the Magnesium Sulfate Value of aggregate sample within the size range 10mm to 14mm in accordance with **BS EN 1367-2 : 2009**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	Bulk Sample
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	26/02/2016
Sampling Location:	Unknown
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Aggregate
Target Specification:	N/A

RESULTS:

Magnesium Sulfate Value Portion 1 (MS 1) =	0.6
Magnesium Sulfate Value Portion 2 (<i>MS</i> ₂) =	0.3

Mean	Magnesium	Sulfate Value (MS) =	1
------	-----------	----------------------	---

Comments

Proportion by mass of laboratory sample used for the test portion = 5% (nearest 5%)

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Elfoulder

Eric Goulden Technical Manager

Moisture Content

Date: 24 February 2016 Test Report Ref: STR 447817

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 48861
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:6.70 Depth Base:6.80
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.2

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447830

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 48868
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:13.26 Depth Base:13.35
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.6

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Page 1 of 1

Date: 24 February 2016 Test Report Ref: STR 447843

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 48881
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:32.65 Depth Base:32.72
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.4

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447861

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 48897
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:57.30 Depth Base:57.40
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.1

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447862

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 48898
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:61.65 Depth Base:61.75
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.2

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447873

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50865
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:67.07 Depth Base:67.20
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.1

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447876

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50868
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:70.10 Depth Base:70.20
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.3

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447878

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50870
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:73.03 Depth Base:73.10
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.6

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447879

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50871
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:76.00 Depth Base:76.09
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.2

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447883

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50875
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:80.04 Depth Base:80.12
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.2

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447884

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50876
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:81.70 Depth Base:81.78
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.6

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447885

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50877
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:87.50 Depth Base:87.57
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.8

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447886

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50878
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:39.70 Depth Base:39.80
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.3

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447890

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50882
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:91.63 Depth Base:91.71
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.8

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447894

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50886
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:93.00 Depth Base:93.10
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.5

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447897

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50889
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:94.96 Depth Base:95.05
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.3

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447899

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50891
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:101.36 Depth Base:101.45
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.6

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447904

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50896
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:108.62 Depth Base:108.70
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.2

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447908

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50900
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:113.12 Depth Base:113.19
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.5

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447912

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50904
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:118.82 Depth Base:118.88
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.9

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Page 1 of 1

Date: 24 February 2016 Test Report Ref: STR 447908

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50900
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:113.12 Depth Base:113.19
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.5

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447912

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50904
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:118.82 Depth Base:118.88
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.9

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Page 1 of 1

Date: 24 February 2016 Test Report Ref: STR 447913

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50905
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:123.44 Depth Base:123.55
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

2.2

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447914

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50906
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:125.90 Depth Base:126.00
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.3

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447915

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50907
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:126.80 Depth Base:126.90
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

2.5

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447919

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50911
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:131.12 Depth Base:131.17
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

2.6

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447920

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50912
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:131.60 Depth Base:131.70
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.2

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447921

Page 1 of 1

Dublin 3 Ireland VAT No: 9D539711

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50913
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:132.65 Depth Base:132.62
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.8

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447925

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50917
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:134.35 Depth Base:134.44
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.1

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447930

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50922
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:142.81 Depth Base:142.91
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.3

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447940

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50931
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:154.60 Depth Base:154.68
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.4

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447941

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50932
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:155.20 Depth Base:155.28
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.7

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447945

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50936
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:163.49 Depth Base:163.56
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

2.5

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447949

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50940
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:172.96 Depth Base:173.07
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.3

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Page 1 of 1

Date: 24 February 2016 Test Report Ref: STR 447949

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50940
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:172.96 Depth Base:173.07
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.3

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Page 1 of 1

Date: 24 February 2016 Test Report Ref: STR 447957

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50947
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:176.00 Depth Base:176.10
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.2

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447964

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50954
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:196.19 Depth Base:186.25
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.8

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447975

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50965
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:209.65 Depth Base:209.72
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.7

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447979

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50969
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:211.10 Depth Base:211.20
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.4

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Page 1 of 1

Date: 24 February 2016 Test Report Ref: STR 447985

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50975
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:218.20 Depth Base:218.28
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.5

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 24 February 2016 Test Report Ref: STR 447986

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50976
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:222.52 Depth Base:222.62
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.0

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Date: 24 February 2016 Test Report Ref: STR 447994

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50984
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:230.13 Depth Base:230.20
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

2.0

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Date: 24 February 2016 Test Report Ref: STR 447999

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50989
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:235.04 Depth Base:235.10
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.3

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Page 1 of 1

Date: 16 February 2016 Test Report Ref: STR 443012

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH04 - 48901
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 3.5 Depth Base: 3.55
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.2

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Date: 15 February 2016 Test Report Ref: STR 443013

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH04 - 48902
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 5.4 Depth Base: 5.48
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.6

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Date: 15 February 2016 Test Report Ref: STR 443016

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56158
Client Ref. No:	BH04 - 48904
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 9.3 Depth Base: 9.36
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.3

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Date: 15 February 2016 Test Report Ref: STR 443018

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH04 - 48906
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 11.77 Depth Base: 11.83
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.2

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 21 December 2015 Test Report Ref: STR 443020

Page 1 of 2

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Uniaxial Compressive Strength in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

No
S56158
Various
Unknown
08/12/2015
08/12/2015
Various
Lackagh Quarry SI
Unknown
Client
Core
N/A

RESULTS:

See attached

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager Approved by: -

Ellpulden

Eric Goulden Technical Manager

вн	Core Diameter (mm)	Height/ Diameter Ratio	Uniaxial compressive strength (MPa)	Mode of Failure	EN ISO 14689-1 Term	Water content (%)
BH04 48908	82	2.6:1	76	Ν	Strong	0.1
BH04 48912	82.3	1.9:1	86	Ν	Strong	0.3
BH04 48921	82.3	1.5:1	55	Ν	Strong	0.1
BH04 48927	82.1	1.6:1	53	Ν	Strong	0.2
BH04 48931	82.2	2.6:1	111	N	Very Strong	0.1
BH04 48933	82	2.1:1	91	N	Strong	0.2
BH04 48950	82	2.5:1	76	N	Strong	0.2
BH04 48957	82	2:1	78	N	Strong	0.3
BH04 48963	82.2	2.4:1	92	N	Strong	0.1
BH05 48982	82	1.8:1	91	N	Strong	0.2
BH05 48986	81.5	2.6:1	86	N	Strong	0.4
BH05 48991	81.4	2.5:1	94	N	Strong	0.1
BH05 48994	82	1.9:1	72	N	Strong	0.2
BH05 48998	82.2	2.6:1	77	N	Strong	0.2
BH05 50711	78.5	1.8:1	79	N	Strong	0.2
BH05 50729	79	2.5:1	116	N	Very Strong	0.3
BH05 50731	81.4	2.6:1	51	Ν	Strong	0.1
BH05 50733	81.6	2.1:1	54	N	Strong	0.2
BH05 50737	82	1.5:1	131	N	Very Strong	0.2

Test Report Ref: STR 443020 - Page 2 of 2

Comments

1) The uniaxial compressive strength was carried out in accordance with ISRM guidelines.

- 2) Stress Rate: 0.7Mpa/s.
- 3)

EN ISO 14689-1 : 2003 Rock Strength Terms			
Compressive Strength mpa Term			
<1.0	Extremely Weak		
1 to 5	Very Weak		
5 to 25	Weak		
25 to 50	Meduim Strong		
50 to 100	Strong		
100 to 250	Very Strong		
> 250	Extremely Strong		

Date: 15 February 2016 Test Report Ref: STR 443034

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56158
Client Ref. No:	BH04 - 48922
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 20.8 Depth Base: 20.85
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.4

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 15 February 2016 Test Report Ref: STR 443036

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH04 - 48924
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 21.8 Depth Base: 21.9
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

1.0

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 15 February 2016 Test Report Ref: STR 443050

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56158
Client Ref. No:	BH04 - 48938
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 28.27 Depth Base: 38.4
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.1

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Dublin 3 Ireland Date: 15 February 2016 Test Report Ref: STR 443067

Page 1 of 1

Contract: Lackagh Quarry

VAT No: 9D539711

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Total Sulfur Content of an Aggregate Sample in accordance with **BS EN 1744-1 : 2009 : Clause 11**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH04 - 48954
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	21/12/2015
Sampling Location:	Depth Top: 31.66 Depth Base: 31.7
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Total Sulfur Content as S (%) = 95% Confidence limit*

<0.1 *<*0.06% - *<*0.14%

Comments / Departure from specified Procedure

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Elipsulden

Eric Goulden Technical Manager

VAT No: 9D539711

Dublin 3 Ireland Date: 15 February 2016 Test Report Ref: STR 443069

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

Contract: Lackagh Quarry

To determine the Oxidisable sulphides (OS) content of an Sample by calculation of **TRL Report 447 Test No. 2 and Test No. 4**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56158
Client Ref. :	BH04 - 48956
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	24/12/2015
Sampling Location:	Depth Top: 31.84 Depth Base: 31.93
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	<0.5 % SO ₄ - If deposited within 500mm of Cementitious
	Materials
	<0.06 % SO ₄ - If deposited within 500mm of Metallic
	Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) =

0.04 SO₄

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Ellewiden

Eric Goulden Technical Manager

Dublin 3 Ireland Date: 15 February 2016 Test Report Ref: STR 443072

Page 1 of 1

Contract: Lackagh Quarry

VAT No: 9D539711

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the pH Value of Soils in accordance with **BS 1377:Part 3:1990 - Clause 9, Electrometric Method.**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH04 - 48959
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	22/12/2015
Sampling Location:	Depth Top: 32.26 Depth Base: 32.35
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

pH Value = 95% Confidence limit* **9.3** 9.06% - 9.54%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Eleviden

Eric Goulden Technical Manager

Date: 15 February 2016 Test Report Ref: STR 443081

Dublin 3 Ireland VAT No: 9D539711

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH04 - 48965
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 33.12 Depth Base: 33.16
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.1

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Page 1 of 1

Date: 15 February 2016 Test Report Ref: STR 443085

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH04 - 48969
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 34.56 Depth Base: 34.59
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.3

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 15 February 2016 Test Report Ref: STR 443086

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH04 - 48970
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 34.96 Depth Base: 35
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.2

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 15 February 2016 Test Report Ref: STR 443087

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH05 - 48971
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 0.65 Depth Base: 0.73
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.3

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 15 February 2016 Test Report Ref: STR 443088

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56158
Client Ref. No:	BH05 - 48972
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 0.98 Depth Base: 1.04
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.1

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Date: 15 February 2016 Test Report Ref: STR 443089

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH05 - 48973
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 1.41 Depth Base: 1.5
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.1

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Date: 15 February 2016 Test Report Ref: STR 443096

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH05 - 48980
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 8.9 Depth Base: 8.96
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.1

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Date: 15 February 2016 Test Report Ref: STR 443104

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56158
Client Ref. No:	BH05 - 48988
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 12.92 Depth Base: 13.07
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.3

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 15 February 2016 Test Report Ref: STR 443128

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH05 - 50712
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 28.75 Depth Base: 28.85
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.1

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

VAT No: 9D539711

Dublin 3 Ireland Date: 15 February 2016 Test Report Ref: STR 443132

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

Contract: Lackagh Quarry

To determine the Oxidisable sulphides (OS) content of an Sample by calculation of **TRL Report 447 Test No. 2 and Test No. 4**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56158
Client Ref. :	BH05 - 50716
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	24/12/2015
Sampling Location:	Depth Top: 29.18 Depth Base: 29.3
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	<0.5 % SO ₄ - If deposited within 500mm of Cementitious
	Materials
	<0.06 % SO ₄ - If deposited within 500mm of Metallic
	Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) =

<0.01 SO₄

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Ellewiden

Eric Goulden Technical Manager

Dublin 3 Ireland Date: 15 February 2016 Test Report Ref: STR 443133

Page 1 of 1

Contract: Lackagh Quarry

VAT No: 9D539711

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the pH Value of Soils in accordance with **BS 1377:Part 3:1990 - Clause 9, Electrometric Method.**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56158
Client Ref. No:	BH05 - 50717
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	22/12/2015
Sampling Location:	Depth Top: 29.3 Depth Base: 29.4
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

pH Value = 95% Confidence limit* **9.2** 8.96% - 9.44%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Eleviden

Eric Goulden Technical Manager

Date: 15 February 2016 Test Report Ref: STR 443134

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

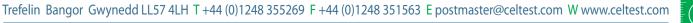
SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH05 - 50718
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 30.3 Depth Base: 30.4
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.4


Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 15 February 2016 Test Report Ref: STR 443137

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56158
Client Ref. No:	BH05 - 50721
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 30.88 Depth Base: 30.92
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.3

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Date: 15 February 2016 Test Report Ref: STR 443142

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH05 - 50726
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	15/12/2015
Sampling Location:	Depth Top: 32.54 Depth Base: 32.6
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Water Content (%) =

0.2

Comments None

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Elloulden Approved by: -

Eric Goulden Technical Manager

Oxidisable Sulphur

Date: 16 March 2016 Test Report Ref: STR 447856

Page 1 of 1

Dublin 3 Ireland VAT No: 9D539711 Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Oxidisable sulphides (OS) content of an Sample by calculation of **TRL Report 447 Test No. 2 and Test No. 4**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. :	BH01 - 48892
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:55.30 Depth Base:55.40
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Testing
Target Specification:	<0.5 % SO ₄ - If deposited within 500mm of Cementitious
	Materials
	<0.06 % SO ₄ - If deposited within 500mm of Metallic
	Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) =

<0.01 SO₄

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Ellewiden

Eric Goulden Technical Manager

Date: 16 March 2016 Test Report Ref: STR 447895

Page 1 of 1

Dublin 3 Ireland VAT No: 9D539711 Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Oxidisable sulphides (OS) content of an Sample by calculation of **TRL Report 447 Test No. 2 and Test No. 4**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. :	BH01 - 50887
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:94.90 Depth Base:94.96
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Testing
Target Specification:	<0.5 % SO ₄ - If deposited within 500mm of Cementitious
	Materials
	<0.06 % SO ₄ - If deposited within 500mm of Metallic
	Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) =

<0.01 SO₄

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Ellewiden

Eric Goulden Technical Manager

VAT No: 9D539711

Dublin 3 Ireland Date: 16 March 2016 Test Report Ref: STR 447938

Page 1 of 1

Contract: Lackagh Quarry

TEST REQUIREMENTS: To determine the Oxidisable sulphides (OS) content of an Sample by calculation of **TRL Report 447 Test No. 2 and Test No. 4**

LABORATORY TEST REPORT

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56595
Client Ref. :	BH01 - 50930
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:153.20 Depth Base:153.30
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Testing
Target Specification:	<0.5 % SO ₄ - If deposited within 500mm of Cementitious
	Materials
	<0.06 % SO ₄ - If deposited within 500mm of Metallic
	Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) =

<0.01 SO₄

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Ellewiden

Eric Goulden Technical Manager

Dublin 3 Ireland Date: 16 March 2016 Test Report Ref: STR 447971

Page 1 of 1

Contract: Lackagh Quarry

VAT No: 9D539711

LABORATORY TEST REPORT

<u>TEST</u>	REQ	UIRE	MEN	ITS:

To determine the Oxidisable sulphides (OS) content of an Sample by calculation of **TRL Report 447 Test No. 2 and Test No. 4**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. :	BH01 - 50961
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:201.47 Depth Base:201.55
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Testing
Target Specification:	<0.5 % SO ₄ - If deposited within 500mm of Cementitious
	Materials
	<0.06 % SO ₄ - If deposited within 500mm of Metallic
	Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) =

<0.01 SO₄

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Ellewiden

Eric Goulden Technical Manager

Date: 16 March 2016 Test Report Ref: STR 448010

Page 1 of 1

Dublin 3 Ireland VAT No: 9D539711 Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Oxidisable sulphides (OS) content of an Sample by calculation of **TRL Report 447 Test No. 2 and Test No. 4**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. :	BH01 - 51000
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:253.30 Depth Base:253.38
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Testing
Target Specification:	<0.5 % SO ₄ - If deposited within 500mm of Cementitious
	Materials
	<0.06 % SO ₄ - If deposited within 500mm of Metallic
	Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) =

<0.01 SO₄

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Ellewiden

Eric Goulden Technical Manager

VAT No: 9D539711

Dublin 3 Ireland Date: 15 February 2016 Test Report Ref: STR 443069

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

Contract: Lackagh Quarry

To determine the Oxidisable sulphides (OS) content of an Sample by calculation of **TRL Report 447 Test No. 2 and Test No. 4**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56158
Client Ref. :	BH04 - 48956
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	24/12/2015
Sampling Location:	Depth Top: 31.84 Depth Base: 31.93
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	<0.5 % SO ₄ - If deposited within 500mm of Cementitious
	Materials
	<0.06 % SO ₄ - If deposited within 500mm of Metallic
	Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) =

0.04 SO₄

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Ellewiden

Eric Goulden Technical Manager

VAT No: 9D539711

Dublin 3 Ireland Date: 15 February 2016 Test Report Ref: STR 443132

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

Contract: Lackagh Quarry

To determine the Oxidisable sulphides (OS) content of an Sample by calculation of **TRL Report 447 Test No. 2 and Test No. 4**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56158
Client Ref. :	BH05 - 50716
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	24/12/2015
Sampling Location:	Depth Top: 29.18 Depth Base: 29.3
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	<0.5 % SO ₄ - If deposited within 500mm of Cementitious
	Materials
	<0.06 % SO ₄ - If deposited within 500mm of Metallic
	Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) =

<0.01 SO₄

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Ellewiden

Eric Goulden Technical Manager

pH Value

Date: 16 March 2016 Test Report Ref: STR 447857

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the pH Value of Soils in accordance with **BS 1377:Part 3:1990 - Clause 9, Electrometric Method.**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 48893
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	09/02/2016
Sampling Location:	Depth Top:55.84 Depth Base:55.92
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Testing
Target Specification:	N/A

RESULTS:

pH Value =
95% Confidence limit*

9.1 8.86% - 9.34%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Eleviden

Eric Goulden Technical Manager

Dublin 3 Ireland

Date: 16 March 2016 Test Report Ref: STR 447896

Page 1 of 1

VAT No: 9D539711

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the pH Value of Soils in accordance with BS 1377:Part 3:1990 - Clause 9, Electrometric Method.

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50888
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	09/02/2016
Sampling Location:	Depth Top:94.96 Depth Base:95.05
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Testing
Target Specification:	N/A

RESULTS:

pH Value = 95% Confidence limit* 9.2 8.96% - 9.44%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Eleviden

Eric Goulden **Technical Manager**

Dublin 3 Ireland Date: 16 March 2016 Test Report Ref: STR 447928

Page 1 of 1

Contract: Lackagh Quarry

VAT No: 9D539711

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the pH Value of Soils in accordance with **BS 1377:Part 3:1990 - Clause 9, Electrometric Method.**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50920
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	09/02/2016
Sampling Location:	Depth Top:138.60 Depth Base:138.72
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Testing
Target Specification:	N/A

RESULTS:

pH Value = 95% Confidence limit* **9.2** 8.96% - 9.44%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Eleviden

Eric Goulden Technical Manager

Dublin 3 Ireland

Date: 16 March 2016 Test Report Ref: STR 447959

Page 1 of 1

VAT No: 9D539711

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the pH Value of Soils in accordance with BS 1377:Part 3:1990 - Clause 9, Electrometric Method.

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50949
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	09/02/2016
Sampling Location:	Depth Top:182.12 Depth Base:182.20
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Testing
Target Specification:	N/A

RESULTS:

pH Value = 95% Confidence limit* 9.3 9.06% - 9.54%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Eleviden

Eric Goulden **Technical Manager**

Date: 16 March 2016 Test Report Ref: STR 447984

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To

To determine the pH Value of Soils in accordance with **BS 1377:Part 3:1990 - Clause 9, Electrometric Method.**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50974
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	09/02/2016
Sampling Location:	Depth Top:213.80 Depth Base:213.90
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Testing
Target Specification:	N/A

RESULTS:

pH Value = 95% Confidence limit* **9.1** 8.86% - 9.34%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Eleviden

Eric Goulden Technical Manager

Dublin 3 Ireland Date: 15 February 2016 Test Report Ref: STR 443072

Page 1 of 1

Contract: Lackagh Quarry

VAT No: 9D539711

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the pH Value of Soils in accordance with **BS 1377:Part 3:1990 - Clause 9, Electrometric Method.**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH04 - 48959
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	22/12/2015
Sampling Location:	Depth Top: 32.26 Depth Base: 32.35
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

pH Value = 95% Confidence limit* **9.3** 9.06% - 9.54%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Eleviden

Eric Goulden Technical Manager

Dublin 3 Ireland Date: 15 February 2016 Test Report Ref: STR 443133

Page 1 of 1

Contract: Lackagh Quarry

VAT No: 9D539711

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the pH Value of Soils in accordance with **BS 1377:Part 3:1990 - Clause 9, Electrometric Method.**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56158
Client Ref. No:	BH05 - 50717
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	22/12/2015
Sampling Location:	Depth Top: 29.3 Depth Base: 29.4
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

pH Value = 95% Confidence limit* **9.2** 8.96% - 9.44%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Eleviden

Eric Goulden Technical Manager

Point Load Testing

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D539711 Date: 21st December 2015 Test Report Ref:. STR: 443019

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48907 Unknown 08/12/2015 8/12/2015 Depth Top: 12.62 Depth Base: 12.75 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443019 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł									
Sample Number													
Date Recived	8.12.15												
Sample Ref	BH04 48907												
Key : -													
D	Always dista	ance be	twee	en plate	en conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests	
W	Smallest wid	dth perp	bend	icular te	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N	
	ie core diam	neter fo	or axi	al tests	i.				ls	Uncorre	ected stre	ngth index	
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index	
A	W*D minimu	um x-se	ection	nal area	a				F	Size co	rrection fa	actor	
	For axial or i	irregula	ır blo	ck test	0.3W <	< D < W			#	Test pe	Test perpendicular to fabric		
D*D	= D*D for di	-							//	Test parallel to fabric			
-													
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive	
no	type	type		mm	mm	KN	=W*D					Strength (MPa)	
*	*	*	*	*	*	*							
Axial, Block or Lu	mp Tests												
1	Core	d		80	112	20.0	8960	11408	1.75	1.41	2.47	59.2	
2													
3													
4													
5													
7	+												
8													
9													
10													
											Mean	59.2	

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D539711 Date: 21st December 2015 Test Report Ref:. STR: 443021

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48909 Unknown 08/12/2015 8/12/2015 Depth Top: 13.1 Depth Base: 13.25 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443021 - Page 2 of 2

Client	Priority Cons	structio	n I to	4									
Sample Number	S56158												
Date Recived	8.12.15												
Sample Ref	BH04 48909	,											
•													
Key : -													
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests	
W	Smallest wid	Ith perp	end	icular te	o loadir	ng direct	ion		Р	Load fa	ilure in Kl	N	
	ie core diam	neter fo	r axi	al tests	5.				ls	Uncorre	ected stre	ngth index	
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index	
A	W*D minimu	ım x-se	ectio	nal area	a				F	Size co	rrection fa	actor	
	For axial or i	rregula	r blc	ck test	0.3W <	< D < W			#	Test pe	Test perpendicular to fabric		
D*D	= D*D for di	ametra	ıl (d)	tests						Test parallel to fabric			
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	ls (50)	Approx. Compressive	
no	type	type		mm	mm	KN	=W*D					Strength (MPa)	
*	*	*	*	*	*	*							
Axial, Block or Lu	mp Tests												
1	Core	d		80	130	20.0	10400	13242	1.51	1.46	2.20	52.7	
2													
3													
4													
5													
6							-						
7													
8													
9													
10													
											Mean	52.7	

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D539711 Date: 21st December 2015 Test Report Ref:. STR: 443023

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48911 Unknown 08/12/2015 8/12/2015 Depth Top: 14.63 Depth Base: 14.74 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443023 - Page 2 of 2

Client	Priority Cons	structio	n I to	4									
Sample Number	S56158												
Date Recived	8.12.15												
Sample Ref	BH04 48911												
Key : -													
D	Always dista	ince he	twee	n nlate	n conta	act point	s		D*D	- 44/n	i for axial	(a) and irregular block (b) tests	
W	Always distance between platen contact points Smallest width perpendicular to loading direction								P	Load failure in KN			
	ie core diameter for axial tests.								ls	Uncorrected strength index			
									ls (50)				
A	W =(W1 + W2)/2 for irregular blocks.								F	Point load strength index Size correction factor			
A													
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric			
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test parallel to fabric			
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive	
no	type	type		mm	mm	KN	=W*D					Strength (MPa)	
*	*	*	*	*	*	*							
Axial, Block or Lu	mp Tests												
1	Core	d		80	105	15.8	8400	10695	1.48	1.39	2.05	49.2	
2													
3													
4													
5													
<u> </u>	+												
8													
9	1												
10	1									1			
											Mean	49.2	

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D539711 Date: 21st December 2015 Test Report Ref:. STR: 443025

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48913 Unknown 08/12/2015 8/12/2015 Depth Top: 14.97 Depth Base: 15.13 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443025 - Page 2 of 2

Client	Priority Cons	structio	n I ta	4										
Sample Number	S56158													
Date Recived	8.12.15													
Sample Ref	BH04 48913													
Key : -														
-														
D	Always dista								D*D	= 4A/pi for axial (a) and irregular block (b) tests				
W	Smallest wid	Ith perp	pend	icular te	o loadir	ig directi	ion		Р	Load fa	Load failure in KN			
	ie core diam	neter fo	or axi	al tests	5.				ls	Uncorre	Uncorrected strength index			
	W =(W1 + W2)/2 for irregular blocks.								ls (50)	Point load strength index				
А	W*D minimum x-sectional area								F		Size correction factor			
	-					. D . W			#					
	For axial or irregular block test 0.3W < D <										Test perpendicular to fabric			
D*D	= D*D for di	ametra	ul (d)	tests					//	Test pa	Test parallel to fabric			
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D					Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	Imp Tests													
1	Core	d		80	125	22.1	10000	12732	1.74	1.44	2.50	60.1		
2														
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	60.1		

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D539711 Date: 21st December 2015 Test Report Ref:. STR: 443027

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48915 Unknown 08/12/2015 8/12/2015 Depth Top: 17.74 Depth Base: 17.86 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443027 - Page 2 of 2

Client	Priority Cons	structio	n I to											
Sample Number	S56158													
Date Recived	8.12.15													
Sample Ref	BH04 48915													
Key : -														
						4 4			D*D	4.0./m				
D	Always dista								D*D	= 4A/pi for axial (a) and irregular block (b) tests				
W	Smallest wid					ng directi	on		Р	Load fa	Load failure in KN			
	ie core diameter for axial tests.								ls	Uncorrected strength index				
	W =(W1 + W2)/2 for irregular blocks.								ls (50)	Point load strength index				
А	W*D minimum x-sectional area								F	Size correction factor				
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D		r diametral (d) tests							//	Test parallel to fabric				
									11					
		_					-		-					
Sample	Sample	Test		D	W	P	A	D*D	ls	F	ls (50)	Approx. Compressive		
	type	type *	*	mm *	mm *	KN *	=W*D					Strength (MPa)		
Axial, Block or Lu		~	^	^	~	^								
AXIAI, BIOCK OF LU	inp resis													
1	Core	d		80	135	23.5	10800	13751	1.71	1.47	2.51	60.2		
2	0010	ŭ		00	100	20.0	10000	10/01	1.7 1	1.47	2.01	00.2		
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	60.2		

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D539711 Date: 21st December 2015 Test Report Ref:. STR: 443029

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48917 Unknown 08/12/2015 8/12/2015 Depth Top: 18.12 Depth Base: 18.2 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443029 - Page 2 of 2

Client	Priority Cons	structio	n I ta	4									
Sample Number	S56158												
Date Recived	8.12.15												
Sample Ref	BH04 48917												
	DI 104 40317												
Kovi													
Key : -													
D	Always dista	twee	en plate	en conta	act point	S		D*D	= 4A/pi for axial (a) and irregular block (b) tests				
W	Smallest wid	Ith perp	bend	icular te	o loadir	ng directi	ion		Р	Load failure in KN			
	ie core diam	neter fo	r axi	al tests	5.				ls	Uncorrected strength index			
	W = (W1 + W2)/2 for irregular blocks.								ls (50)	Point load strength index			
А	W*D minimum x-sectional area								F	Size correction factor			
A													
	For axial or irregular block test 0.3W < D <								#	Test perpendicular to fabric			
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	abric		
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive	
no	type	type		mm	mm	KN	=W*D					Strength (MPa)	
*	*	*	*	*	*	*							
Axial, Block or Lu	mp Tests												
	-												
1	Core	d		80	85	15.4	6800	8658	1.78	1.32	2.35	56.5	
2													
3													
4													
5													
6													
7													
8													
9													
10													
											Mean	56.5	

Date: 21st December 2015 Test Report Ref:. STR: 443030

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48918 Unknown 08/12/2015 8/12/2015 Depth Top: 19.2 Depth Base: 19.32 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443030 - Page 2 of 2

Client	Priority Cons	structio	n Lto	1								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48918	3										
Key : -												
D	Always dista	ince be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectior	nal area	a				F	Size co	rrection fa	actor
	For axial or i	or axial or irregular block test 0 D*D for diametral (d) tests							#	Test pe	rpendicul	ar to fabric
D*D		-							//		rallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	Imp Tests											
1	Core	d		80	120	13.0	9600	12223	1.06	1.43	1.52	36.5
2												
3												
4												
<u> </u>												
7												
8												
9												
10												
											Mean	36.5

Date: 21st December 2015 Test Report Ref:. STR: 443032

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48920 Unknown 08/12/2015 8/12/2015 Depth Top: 20.12 Depth Base: 20.22 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443032 - Page 2 of 2

Client	Priority Cons	structio	n I to									
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48920											
Key : -												
D	Always dista	ince be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	bend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu	D minimum x-sectional area axial or irregular block test 0.							F	Size co	rrection fa	actor
	For axial or i	or axial or irregular block test 0.3 D*D for diametral (d) tests							#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
	0					00.5	70.40	0000	0.05	4.07	0.00	70.0
1 2	Core	d		80	98	22.5	7840	9982	2.25	1.37	3.08	73.9
3												
4												
5												
6										1		
7								_				
8												
9												
10												
											Mean	73.9

Date: 21st December 2015 Test Report Ref:. STR: 443035

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48923 Unknown 08/12/2015 8/12/2015 Depth Top: 21.2 Depth Base: 21.3 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443035 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48923	3										
Key : -												
-												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid								Р		ilure in Kl	• • •
	ie core diam	neter fo	or axi	al tests	i.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu	ım x-se	ectio	nal area	à				F	Size co	rrection fa	actor
	For axial or i	or axial or irregular block test 0 D*D for diametral (d) tests							#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests						Test pa	rallel to fa	abric
			Ľ									
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						× ,
Axial, Block or Lu	Imp Tests											
1	Core	d		80	87	19.0	6960	8862	2.14	1.33	2.85	68.4
2												
3												
4												
5												
6												
7												
8												
10												
10												68.4
											Mean	00.4

Date: 21st December 2015 Test Report Ref:. STR: 443037

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48925 Unknown 08/12/2015 8/12/2015 Depth Top: 22.2 Depth Base: 22.31 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443037 - Page 2 of 2

Client	Priority Cons	structio	n Lto	4								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48925											
Key : -												
-												
D	Always dista	ince be	twee	en plate	en conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid								Р		ilure in Kl	
	ie core diam					J	-		ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)		ad streng	•
А	W*D minimu			-					F	1	rrection fa	
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-							//		rallel to fa	
				10313						1031 pa		
		_					-		-			
Sample	Sample	Test		D	W	P	A	D*D	ls	F	ls (50)	Approx. Compressive
	type	type *	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Axial, Block or Lu		~	Ŷ	^	^	^						
AXIAI, DIOCK OF LU												
1	Core	d		80	100	27.9	8000	10186	2.74	1.37	3.76	90.2
2											0.1.0	00.2
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	90.2

Date: 21st December 2015 Test Report Ref:. STR: 443038

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48926 Unknown 08/12/2015 8/12/2015 Depth Top: 22.6 Depth Base: 22.78 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443038 - Page 2 of 2

Client	Priority Cons	structio	n I to	1						1		
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48926											
	DI 104 40920	,										
Key : -												
itey												
D	Always dista	ince be	twee	en plate	en conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests	i.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)		ad streng	•
А	W*D minimu					-			F		rrection fa	
<u>N</u>	-								#			
	For axial or i				0.300 •	< D < W						ar to fabric
D*D	= D*D for di	= D*D for diametral (d) tests							//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D				· · · ·	Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	d		80	142	24.4	11360	14464	1.69	1.48	2.50	60.1
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	60.1

Date: 21st December 2015 Test Report Ref:. STR: 443040

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48928 Unknown 08/12/2015 8/12/2015 Depth Top: 23.1 Depth Base: 23.2 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443040 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48928	3										
Key : -												
D	Always dista	ance be	twee	en plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	dth perp	bend	icular te	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests	i.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu	um x-se	ectior	nal area	à				F	Size co	rrection fa	actor
	For axial or i	or axial or irregular block test 0 D*D for diametral (d) tests							#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	iametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	d		80	100	20.0	8000	10186	1.96	1.37	2.69	64.6
2												
3 4												
5												
6												
7												
8												
9												
10												
											Mean	64.6

Date: 21st December 2015 Test Report Ref:. STR: 443042

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48930 Unknown 08/12/2015 8/12/2015 Depth Top: 23.7 Depth Base: 23.8 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443042 - Page 2 of 2

Client	Priority Cons	structio	n I to	4								
Sample Number	S56158			1								
Date Recived	8.12.15											
Sample Ref	BH04 48930											
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	bend	icular te	o loadir	ig directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	i.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu	ım x-se	ection	nal area	a				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	d		80	95	23.1	7600	9677	2.39	1.36	3.24	77.7
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	77.7

Date: 21st December 2015 Test Report Ref:. STR: 443044

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48932 Unknown 08/12/2015 8/12/2015 Depth Top: 24.17 Depth Base: 24.28 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443044 - Page 2 of 2

Client	Priority Cons	structio	n Lto	4								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48932											
•												
Key : -												
-												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular te	o loadir	ng direct	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	5.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectio	nal area	a				F	Size co	rrection fa	actor
	For axial or i	rregula	r blc	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	d		80	100	22.9	8000	10186	2.25	1.37	3.08	74.0
2												
3												
4												
5		L										
6									-			
7												
8												
9												
10												
											Mean	74.0

Date: 21st December 2015 Test Report Ref:. STR: 443047

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48934 Unknown 08/12/2015 8/12/2015 Depth Top: 25.08 Depth Base: 25.19 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443047 - Page 2 of 2

Client	Priority Cons	structio	n I ta	4								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48934											
•												
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	bend	icular te	o loadir	ng direct	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	i.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks	i.			ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectio	nal area	a				F	Size co	rrection fa	actor
	For axial or i	rregula	r blc	ck test	0.3W -	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	ump Tests											
1	Core	d		80	111	26.0	8880	11306	2.30	1.40	3.23	77.5
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	77.5

Date: 21st December 2015 Test Report Ref:. STR: 443049

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48937 Unknown 08/12/2015 8/12/2015 Depth Top: 27.91 Depth Base: 28 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443049 - Page 2 of 2

Client	Priority Cons	structio	n I ta	4								
Sample Number	S56158			1								
Date Recived	8.12.15											
Sample Ref	BH04 48937											
Key : -												
-												
D	Always dista								D*D			(a) and irregular block (b) tests
W	Smallest wid	Ith perp	pend	licular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	ial tests	i.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point Ic	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i								#			ar to fabric
		-			0.300 <							
D*D	= D*D for diametral (d) tests								//	l est pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	Imp Tests											
1	Core	d		80	86	24.6	6880	8760	2.81	1.33	3.72	89.4
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	89.4

Date: 21st December 2015 Test Report Ref:. STR: 443051

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48939 Unknown 08/12/2015 8/12/2015 Depth Top: 28.4 Depth Base: 28.44 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443051 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48939)										
•												
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	ion		Р		ilure in Kl	
	ie core diam	neter fo	or axi	al tests	S.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectio	nal area	a				F	1	rrection fa	
	For axial or i	axial or irregular block test 0 D*D for diametral (d) tests							#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	ump Tests											
1	Core	d		80	104	21.8	8320	10593	2.06	1.38	2.85	68.3
2												
3												
4												
5												
6									-			
7												
8												
9												
10												
											Mean	68.3

Date: 21st December 2015 Test Report Ref:. STR: 443051

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48939 Unknown 08/12/2015 8/12/2015 Depth Top: 28.4 Depth Base: 28.44 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443051 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48939)										
•												
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	ion		Р		ilure in Kl	
	ie core diam	neter fo	or axi	al tests	S.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectio	nal area	a				F	1	rrection fa	
	For axial or i	axial or irregular block test 0 D*D for diametral (d) tests							#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	ump Tests											
1	Core	d		80	104	21.8	8320	10593	2.06	1.38	2.85	68.3
2												
3												
4												
5												
6									-			
7												
8												
9												
10												
											Mean	68.3

Date: 21st December 2015 Test Report Ref:. STR: 443054

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48943 Unknown 08/12/2015 8/12/2015 Depth Top: 29.86 Depth Base: 29.94 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443054 - Page 2 of 2

Client	Priority Cons	structio	n I ta	4						[
Sample Number	S56158													
Date Recived	8.12.15													
Sample Ref	BH04 48943													
Key : -														
D	Always dista	nce be	twee	en plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	on		Р	Load failure in KN				
	ie core diam					-			ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index		
А	W*D minimu								F	Size co	rrection fa	actor		
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for di	tests					//	Test parallel to fabric						
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D					Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	mp Tests													
1	Lump	b		80	40	14.0	3200	4074	3.44	1.12	3.84	92.0		
2														
3														
4 5														
6	+													
7														
8														
9														
10														
											Mean	92.0		

Date: 21st December 2015 Test Report Ref:. STR: 443062

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48949 Unknown 08/12/2015 8/12/2015 Depth Top: 30.93 Depth Base: 30.03 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443062 - Page 2 of 2

Client	Priority Cons	structio	n Lto	d l										
Sample Number	S56158													
Date Recived	8.12.15													
Sample Ref	BH04 48949)												
Key : -														
D	Always dista	ance be	twee	en plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	dth perp	bend	icular to	o loadir	ng directi	on		Р	Load failure in KN				
	ie core diameter for axial tests.								ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index		
А	W*D minimu	um x-se	ectior	nal area	à				F	Size co	Size correction factor			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for di	iametra	ıl (d)	tests					//	Test parallel to fabric				
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D					Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	mp Tests													
1	Core	d		80	85	20.9	6800	8658	2.41	1.32	3.19	76.6		
2														
3 4														
5														
6														
7														
8														
9														
10														
											Mean	76.6		

Date: 21st December 2015 Test Report Ref:. STR: 443064

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48951 Unknown 08/12/2015 8/12/2015 Depth Top: 31.3 Depth Base: 31.4 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443064 - Page 2 of 2

Client	Priority Cons	structio	n I to	4										
Sample Number														
Date Recived	8.12.15													
Sample Ref	BH04 48951													
•														
Key : -														
D	Always dista	ince be	twee	en plate	en conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	Ith perp	bend	icular te	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N		
	ie core diam	neter fo	r axi	al tests	i.				ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks	-			ls (50)	Point lo	ad streng	th index		
А	W*D minimu	ım x-se	ectio	nal area	ž				F	Size co	Size correction factor			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								// Test parallel to fabric			abric		
-														
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D					Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	mp Tests													
1	Core	d		80	112	22.9	8960	11408	2.01	1.41	2.82	67.8		
2														
3														
4														
5														
6									-					
7														
8														
9														
10														
											Mean	67.8		

Date: 21st December 2015 Test Report Ref:. STR: 443068

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48955 Unknown 08/12/2015 8/12/2015 Depth Top: 31.76 Depth Base: 31.84 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443068 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł										
Sample Number														
Date Recived	8.12.15													
Sample Ref	BH04 48955													
•														
Key : -														
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	th perp	bend	icular to	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N		
	ie core diam	neter fo	r axi	al tests	5.	-			ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index		
A	W*D minimum x-sectional area								F	Size co	Size correction factor			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests									Test parallel to fabric				
										· ·				
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D				- (/	Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	mp Tests													
1	Core	d		80	90	17.0	7200	9167	1.85	1.34	2.48	59.6		
2														
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	59.6		

Date: 21st December 2015 Test Report Ref:. STR: 443071

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48958 Unknown 08/12/2015 8/12/2015 Depth Top: 32.15 Depth Base: 32.26 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443071 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł									
Sample Number	S56158												
Date Recived	8.12.15												
Sample Ref	BH04 48958												
Key : -													
-													
D	Always dista	nce be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests	
W	Smallest wid			•					 P		ilure in Kl		
	ie core diam					.g all oot			ls			ngth index	
	W =(W1 +								ls (50)		ad streng	•	
А	W*D minimu			-					F	1	rrection fa		
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric			
D*D	$= D^*D \text{ for diametral (d) tests}$												
D*D		ametra	ii (a)	tests						Test pa	rallel to fa		
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	ls (50)	Approx. Compressive	
no	type	type		mm	mm	KN	=W*D					Strength (MPa)	
*	*	*	*	*	*	*							
Axial, Block or Lu	ump Tests												
1	Lump	b		59	125	16.1	7375	9390	1.71	1.35	2.31	55.4	
2													
3 4													
5													
6													
7													
8													
9													
10	1												
											Mean	55.4	

Date: 21st December 2015 Test Report Ref:. STR: 443075

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48962 Unknown 08/12/2015 8/12/2015 Depth Top: 32.5 Depth Base: 32.57 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443075 - Page 2 of 2

Client	Priority Cons	structio	n I to	4										
Sample Number	S56158													
Date Recived	8.12.15													
Sample Ref	BH04 48962													
•														
Key : -														
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	th perp	bend	icular te	o loadir	ng direct	ion		Р	Load fa	ilure in Kl	N		
	ie core diameter for axial tests.								ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index		
A	W*D minimu	ım x-se	ectio	nal area	a				F	Size co	Size correction factor			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								//	Test parallel to fabric				
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D					Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	mp Tests													
1	Lump	b		68	75	17.2	5100	6494	2.65	1.24	3.28	78.8		
2														
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	78.8		

Date: 21st December 2015 Test Report Ref:. STR: 443077

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48964 Unknown 08/12/2015 8/12/2015 Depth Top: 32.85 Depth Base: 32.96 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443077 - Page 2 of 2

Client	Priority Cons	structio	n I to	1						1		
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48964											
	DI 104 40904											
Key : -												
rtey												
D	Always dista	ince be	twee	en plate	en conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	bend	icular te	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)		ad streng	•
А	W*D minimu								F		rrection fa	
	-								#			
	For axial or i				0.300 <	< D < W						ar to fabric
D*D	= D*D for diametral (d) tests								//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D				· · · ·	Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Lump	b		65	90	15.9	5850	7448	2.13	1.28	2.73	65.5
2												
3												
4												
5												
6												
7												
8												
9		-										
10												
											Mean	65.5

Date: 21st December 2015 Test Report Ref:. STR: 443083

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48967 Unknown 08/12/2015 8/12/2015 Depth Top: 33.48 Depth Base: 33.6 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443083 - Page 2 of 2

Client	Priority Cons	structio	n Lto	1								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48967	7										
Key : -												
D	Always dista	ance be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	dth perp	bend	icular to	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	um x-se	ectior	nal area	à				F	Size co	rrection fa	actor
	For axial or i	irregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di						//		rallel to fa			
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
	-											
1	Core	d		80	115	17.2	9200	11714	1.47	1.42	2.08	49.9
2												
3												
4 5												
6												
7												
8												
9												
10												
											Mean	49.9

Date: 21st December 2015 Test Report Ref:. STR: 443091

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 48975 Unknown 08/12/2015 8/12/2015 Depth Top: 2.8 Depth Base: 2.96 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443091 - Page 2 of 2

Client	Priority Cons	structio	n I to	4								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48975	;										
•												
Key : -												
D	Always dista	nce be	twee	en plate	en conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests	S.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)		ad streng	•
A	W*D minimu	ım x-se	ectio	nal area	a				F	Size co	rrection fa	actor
	For axial or i	irregula	r blc	ock test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-							//		Irallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D		-			Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	d		80	170	13.0	13600	17316	0.75	1.55	1.16	27.8
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	27.8

Date: 21st December 2015 Test Report Ref:. STR: 443093

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 48977 Unknown 08/12/2015 8/12/2015 Depth Top: 7.73 Depth Base: 7.84 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443093 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48977	7										
Key : -												
D	Always dista	ance be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core dian	neter fo	or axi	al tests	5.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu	um x-se	ectior	nal area	a				F	Size co	rrection fa	actor
	For axial or i	irregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	tests					//	Test pa	rallel to fa	abric		
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	d		80	110	21.0	8800	11205	1.87	1.40	2.63	63.0
2												
3												
4												
5												
<u> </u>												
8												
9												
10												
											Mean	63.0

Date: 21st December 2015 Test Report Ref:. STR: 443094

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 48978 Unknown 08/12/2015 8/12/2015 Depth Top: 8.1 Depth Base: 8.25 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443094 - Page 2 of 2

Client	Priority Cons	structio	n I to	4								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48978											
•												
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	5.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectio	nal area	a				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-							//		rallel to fa	
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D				, <i>, , , , , , , , , , , , , , , , , , </i>	Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	d		80	160	19.5	12800	16297	1.20	1.52	1.82	43.8
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	43.8

Date: 21st December 2015 Test Report Ref:. STR: 443095

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 48979 Unknown 08/12/2015 8/12/2015 Depth Top: 8.54 Depth Base: 8.66 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443095 - Page 2 of 2

Client	Priority Cons	structio	n Lto	1								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48979)										
Key : -												
-												
D	Always dista	ince be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core dian	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectior	nal area	à				F		rrection fa	
	For axial or i	irregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di							//		rallel to fa		
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	d		80	120	22.1	9600	12223	1.81	1.43	2.58	62.0
2												
3												
4												
5												
6												
8												
9												
10												
10											Mean	62.0

Date: 21st December 2015 Test Report Ref:. STR: 443097

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 48981 Unknown 08/12/2015 8/12/2015 Depth Top: 9.46 Depth Base: 9.57 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443097 - Page 2 of 2

Client	Priority Cons	structio	n Lto	1								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48981											
Key : -												
D	Always dista	ince be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular to	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests		-			ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectior	nal area	à				F		rrection fa	
	For axial or i	irregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-							//		rallel to fa	
			Ĺ							· ·		
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	d		80	100	28.3	8000	10186	2.78	1.37	3.81	91.5
2												
3												
4												
5												
6												
8												
9												
10												
10											Mean	91.5

Date: 21st December 2015 Test Report Ref:. STR: 443099

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 48983 Unknown 08/12/2015 8/12/2015 Depth Top: 9.77 Depth Base: 9.92 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443099 - Page 2 of 2

Priority Cons	structio	n I ta	4								
											
D1100 40000											
				n contr				D*D	4.4/m	for ovial	(a) and irregular black (b) tests
											(a) and irregular block (b) tests
					ng direct	ion		P			
ie core diam	neter fo	r axi	al tests	i.				ls	Uncorre	ected stre	ngth index
W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
W*D minimu	ım x-se	ection	nal area	à				F	Size co	rrection fa	actor
For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
	-							//		-	
			10313					11	1031 pa		
	_					-		-			
							D*D	ls	F	ls (50)	Approx. Compressive
type		*				=VV^D	1				Strength (MPa)
	~	^		^	^						
Core	Ь		80	126	20.5	10080	12834	1 60	1 44	2 31	55.4
0010	ŭ			120	20.0	10000	12001	1.00		2.01	00.1
										Mean	55.4
	S56158 8.12.15 BH05 48983 Always dista Smallest wid ie core dian W =(W1 + W*D minimu For axial or i	S56158 8.12.15 BH05 48983 Always distance be Smallest width perp ie core diameter for W =(W1 + W2)/2 W*D minimum x-see For axial or irregula = D*D for diametra Sample Test type type * *	S56158 8.12.15 BH05 48983 Always distance betwee Smallest width perpend ie core diameter for axi W =(W1 + W2)/2 for ir W*D minimum x-section For axial or irregular blo = D*D for diametral (d) Sample Test type type * * * *	8.12.15 BH05 48983 Always distance between plate Smallest width perpendicular tr ie core diameter for axial tests W =(W1 + W2)/2 for irregular W*D minimum x-sectional area For axial or irregular block test = D*D for diametral (d) tests Sample Test Lambda D type mm * * * * * * * * * *	S56158	S56158	S56158	S56158 8.12.15	S56158	S56158 Image: S56158	S56158 8.12.15 Image: constraint of the second

Date: 21st December 2015 Test Report Ref:. STR: 443100

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 48984 Unknown 08/12/2015 8/12/2015 Depth Top: 10.2 Depth Base: 10.26 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443100 - Page 2 of 2

Client	Priority Cons	structio	n Lto	4								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48984											
Key : -												
-												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid					•			 P		ilure in Kl	
	ie core diam								ls			ngth index
	W =(W1 +					1			ls (50)		ad streng	•
Α	W*D minimu			-		,. 			F	1	rrection fa	
A	-											
	For axial or i	-			0.300 <	< D < W			#			ar to fabric
D*D	= D*D for diametral (d) tests								/	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Lump	b		80	48	17.7	3840	4889	3.62	1.16	4.21	101.0
2												
3												
4												
5												
6												
7												
8												
<u>9</u> 10												
10												404.0
											Mean	101.0

Date: 21st December 2015 Test Report Ref:. STR: 443101

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 48985 Unknown 08/12/2015 8/12/2015 Depth Top: 11.3 Depth Base: 11.45 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443101 - Page 2 of 2

Client	Priority Cons	structio	n Lto	1								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48985	;										
Key : -												
-												
D	Always dista	ince be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu	ım x-se	ectior	nal area	à				F	1	rrection fa	
	For axial or i	irregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	l (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	d		80	146	17.9	11680	14871	1.20	1.49	1.80	43.1
2												
3												
4												
5												
<u>6</u> 7												
8	1											
10												
											Mean	43.1

Date: 21st December 2015 Test Report Ref:. STR: 443103

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 48987 Unknown 08/12/2015 8/12/2015 Depth Top: 11.72 Depth Base: 11.83 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443103 - Page 2 of 2

Client	Priority Cons	structio	n I ta	4								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48987											
	BI105 46967											
Key : -												
rtey												
D	Always dista	ince be	twee	en plate	en conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	bend	icular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	i.				ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu			-					F		rrection fa	
	For axial or i					- D - W			#			ar to fabric
D*D		-			0.577 4							
D*D	$= D^{T}D$ for di	= D*D for diametral (d) tests							//	l est pa	rallel to fa	
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	d		80	100	23.9	8000	10186	2.35	1.37	3.22	77.2
2												
3												
4												
5												
<u>6</u> 7												
8												
9		-										
10												
10											Mean	77.2

Date: 21st December 2015 Test Report Ref:. STR: 443105

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 48989 Unknown 08/12/2015 8/12/2015 Depth Top: 13.5 Depth Base: 13.6 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443105 - Page 2 of 2

Client	Priority Cons	structio	n I to							1		
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48989											
	Di 100 40000	/										
Key : -												
ittey .												
D	Always dista								D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	pend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	-					. D . W			#			
	For axial or i				0.300 <	< D < W						ar to fabric
D*D	= D*D for di	= D*D for diametral (d) tests							//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	Imp Tests											
1	Lump	b		80	43	22.7	3440	4380	5.18	1.13	5.88	141.1
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	141.1

Date: 21st December 2015 Test Report Ref:. STR: 443106

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 48990 Unknown 08/12/2015 8/12/2015 Depth Top: 13.7 Depth Base: 13.81 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443106 - Page 2 of 2

Client	Priority Cons	structio	n Lto	4									
Sample Number	S56158												
Date Recived	8.12.15												
Sample Ref	BH05 48990												
•													
Key : -													
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests	
W	Smallest wid	th perp	bend	icular te	o loadir	g directi	ion		Р	Load fa	ilure in Kl	N	
	ie core diam	neter fo	r axi	al tests	5.	-			ls	Uncorre	ected stre	ngth index	
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index	
A	W*D minimu	ım x-se	ectio	nal area	à				F	Size co	rrection fa	actor	
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric			
D*D	= D*D for diametral (d) tests									Test parallel to fabric			
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	ls (50)	Approx. Compressive	
no	type	type		mm	mm	KN	=W*D					Strength (MPa)	
*	*	*	*	*	*	*							
Axial, Block or Lu	mp Tests												
1	Core	d		80	108	22.1	8640	11001	2.01	1.40	2.80	67.3	
2													
3													
4													
5													
6							-						
7													
8													
9													
10													
											Mean	67.3	

Date: 21st December 2015 Test Report Ref:. STR: 443108

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 48992 Unknown 08/12/2015 8/12/2015 Depth Top: 14.07 Depth Base: 14.15 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443108 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł										
Sample Number	S56158													
Date Recived	8.12.15													
Sample Ref	BH05 48992													
Key : -														
-														
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid					•			Р		ilure in Kl			
	ie core diam					5			ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)		ad streng	•		
А	W*D minimum x-sectional area								F	1	Size correction factor			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for di	-							//	Test parallel to fabric				
										1001 pc				
		-						D +D		_	1 (50)			
Sample	Sample	Test		D	W	P	A =W*D	D*D	ls	F	ls (50)	Approx. Compressive		
<u>no</u>	type *	type *	*	mm *	mm *	KN *	=vv "D					Strength (MPa)		
Axial, Block or Lu	ump Tosts													
Axiai, DIOCK OF EC														
1	Lump	b		80	70	19.8	5600	7130	2.78	1.27	3.52	84.4		
2	ľ													
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	84.4		

Date: 21st December 2015 Test Report Ref:. STR: 443109

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 48993 Unknown 08/12/2015 8/12/2015 Depth Top: 14.27 Depth Base: 14.4 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443109 - Page 2 of 2

Client	Priority Cons	structio	n Lto	1										
Sample Number	S56158													
Date Recived	8.12.15													
Sample Ref	BH05 48993													
Key : -														
D	Always dista	ince be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	Ith perp	bend	icular to	o loadir	ng directi	on		Р	Load failure in KN				
	ie core diam	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index		
A	W*D minimu	ım x-se	ectior	nal area	à				F	Size co	Size correction factor			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for di	-							//	Test parallel to fabric				
										· ·				
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D					Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	mp Tests													
1	Core	d		80	95	22.0	7600	9677	2.27	1.36	3.08	74.0		
2														
3														
4														
5														
6														
7														
8														
<u>9</u> 10														
10												74.0		
											Mean	74.0		

Date: 21st December 2015 Test Report Ref:. STR: 443111

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 48995 Unknown 08/12/2015 8/12/2015 Depth Top: 15.43 Depth Base: 15.55 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 443111 - Page 2 of 2

Client	Priority Cons	structio	n I to	4										
Sample Number	S56158													
Date Recived	8.12.15													
Sample Ref	BH05 48995													
•														
Key : -														
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N		
	ie core diam	neter fo	or axi	al tests	S.				ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index		
A	W*D minimu	ım x-se	ectio	nal area	a				F	Size co	Size correction factor			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D^*D for diametral (d) tests								//	Test parallel to fabric				
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D		-			Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	mp Tests													
1	Core	d		80	80	21.3	6400	8149	2.61	1.30	3.41	81.8		
2														
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	81.8		

Date: 21st December 2015 Test Report Ref:. STR: 443113

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 48997 Unknown 08/12/2015 8/12/2015 Depth Top: 16.45 Depth Base: 16.55 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443113 - Page 2 of 2

Client	Priority Cons	structio	n Lto	4										
Sample Number	S56158													
Date Recived	8.12.15													
Sample Ref	BH05 48997													
•														
Key : -														
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	Ith perp	bend	icular te	o loadir	g directi	ion		Р	Load fa	ilure in Kl	N		
	ie core diam	neter fo	r axi	al tests	5.	-			ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index		
A	W*D minimu	ım x-se	ectio	nal area	à				F	Size co	Size correction factor			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								//	Test pa	Test parallel to fabric			
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D					Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	mp Tests													
1	Core	d		80	95	20.0	7600	9677	2.07	1.36	2.80	67.3		
2														
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	67.3		

Date: 21st December 2015 Test Report Ref:. STR: 443119

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 50703 Unknown 08/12/2015 8/12/2015 Depth Top: 22.07 Depth Base: 22.21 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443119 - Page 2 of 2

Client	Priority Cons	structio	n Lto	4									
Sample Number	S56158												
Date Recived	8.12.15												
Sample Ref	BH05 50703												
Key : -													
-													
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests	
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N	
	ie core diam	neter fo	or axi	al tests	S.	-			ls	Uncorre	ected stre	ngth index	
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index	
А	W*D minimu	ım x-se	ection	nal area	a				F	Size correction factor			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric			
D*D	= D*D for di	-								Test parallel to fabric			
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	ls (50)	Approx. Compressive	
no	type	type		mm	mm	KN	=W*D					Strength (MPa)	
*	*	*	*	*	*	*							
Axial, Block or Lu	mp Tests												
1	Core	d		80	150	23.0	12000	15279	1.51	1.50	2.26	54.3	
2													
3													
4													
5													
6													
7													
8													
9													
10													
											Mean	54.3	

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D53971I Date: 21st December 2015 Test Report Ref:. STR: 443120

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 50704 Unknown 08/12/2015 8/12/2015 Depth Top: 22.9 Depth Base: 23 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443120 - Page 2 of 2

Client	Priority Cons	structio	n I to	4								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 50704	ŀ										
•												
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid					•			P		ilure in Kl	
	ie core diam					ig anoot			ls			ngth index
	W =(W1 +								ls (50)		ad streng	•
A	W*D minimu			-					F	1	rrection fa	
A	-											
	For axial or i	-			0.377 <	< D < W			#			ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	ump Tests											
1	Lump	b		80	55	17.0	4400	5602	3.03	1.20	3.64	87.3
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	87.3

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D53971I Date: 21st December 2015 Test Report Ref:. STR: 443121

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 50705 Unknown 08/12/2015 8/12/2015 Depth Top: 23.94 Depth Base: 24.05 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443121 - Page 2 of 2

Client	Priority Cons	structio	n Lto	1								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 50705	5										
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectior	nal area	à				F	Size co	rrection fa	actor
	For axial or i	irregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-							//		rallel to fa	
										· ·		
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	Imp Tests											
1	Core	d		80	100	20.8	8000	10186	2.04	1.37	2.80	67.2
2												
3												
4												
5												
6												
7												
8												
<u>9</u> 10												
10												67.2
											Mean	67.2

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D53971I Date: 21st December 2015 Test Report Ref:. STR: 443123

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 50707 Unknown 08/12/2015 8/12/2015 Depth Top: 24.73 Depth Base: 24.85 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443123 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 50707											
Key : -												
-												
D	Always dista	ince be	twee	en plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid			•					Р		ilure in Kl	
	ie core diam					U			ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)		ad streng	•
А	W*D minimu			-					F	1	rrection fa	
	For axial or i	rregula	r blc	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-							//		rallel to fa	
			(a)							1001 pc		
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	۲ KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)
*	*	type *	*	*	*	*	_vv D					Strength (Mr a)
Axial, Block or Lu	ump Tests											
1	Core	d		75	90	18.0	6750	8594	2.09	1.32	2.77	66.4
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	66.4

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D53971I Date: 21st December 2015 Test Report Ref:. STR: 443125

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 50709 Unknown 08/12/2015 8/12/2015 Depth Top: 26 Depth Base: 26.12 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443125 - Page 2 of 2

Client	Priority Cons	structio	n I to	4								
Sample Number	S56158			1								
Date Recived	8.12.15											
Sample Ref	BH05 50709											
•												
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	ion		Р		ilure in Kl	
	ie core diam	neter fo	or axi	al tests	S.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectio	nal area	a				F	Size co	rrection fa	actor
	For axial or i	irregula	r blc	ock test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D				, <i>, , , , , , , , , , , , , , , , , , </i>	Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	d		75	103	23.0	7725	9836	2.34	1.36	3.18	76.4
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	76.4

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D53971I Date: 21st December 2015 Test Report Ref:. STR: 443141

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 50725 Unknown 08/12/2015 8/12/2015 Depth Top: 32.44 Depth Base: 32.54 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443141 - Page 2 of 2

Client	Priority Cons	structio	n Lto	4								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 50725	5										
Key : -												
D	Always dista	nce be	twee	en plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular to	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectior	nal area	à				F	Size co	rrection fa	actor
	For axial or i	irregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-							//		rallel to fa	
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						× ,
Axial, Block or Lu	Imp Tests											
1	Core	d		80	80	20.0	6400	8149	2.45	1.30	3.20	76.8
2												
3												
4												
5												
6												
7												
8												
<u>9</u> 10												
10												70.0
											Mean	76.8

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D53971I Date: 21st December 2015 Test Report Ref:. STR: 443143

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 50727 Unknown 08/12/2015 8/12/2015 Depth Top: 32.83 Depth Base: 32.92 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443143 - Page 2 of 2

Client	Priority Cons	structio	n I ta	4								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 50727											
	<u>Dirice 00727</u>											
Key : -												
D	Always dista	nce he	two	n nlate	n cont	act point	e		D*D	$-4\Delta/n$	i for avial	(a) and irregular block (b) tests
W	Smallest wid								P		ilure in Kl	• • •
V	ie core diam					ig ullect						
									ls			ngth index
	W =(W1 +					i.			ls (50)		ad streng	
A	W*D minimu	ım x-se	ectio	nal area	à				F	Size co	rrection fa	actor
	For axial or i	rregula	r blc	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						· · · · · ·
Axial, Block or Lu	mp Tests											
1	Lump	b		80	72	16.0	5760	7334	2.18	1.27	2.78	66.7
2												
3												
4												
5												
<u> </u>												
8												
9												
10	1											
											Mean	66.7

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D539711 Date: 21st December 2015 Test Report Ref:. STR: 443154

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 50736 Unknown 08/12/2015 8/12/2015 Depth Top: 37.4 Depth Base: 37.5 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443154 - Page 2 of 2

Client	Priority Cons	structio	n Lto	4								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 50736	;										
•												
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	5.	-			ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectio	nal area	a				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-							//		Irallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	d		80	95	24.0	7600	9677	2.48	1.36	3.36	80.7
2												
3												
4												
5								-				
6												
7												
8												
9												
10												
											Mean	80.7

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D53971I Date: 21st December 2015 Test Report Ref:. STR: 443156

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 50738 Unknown 08/12/2015 8/12/2015 Depth Top: 37.82 Depth Base: 37.92 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 443156 - Page 2 of 2

Client	Priority Cons	structio	n I to	4						1		
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 50738											
	D1100 007 00											
Key : -												
ittey .												
D	Always dista								D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wic	Ith perp	pend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	-					. D . W			#			
	For axial or i				0.300 <	< D < VV						ar to fabric
D*D	= D*D for di	= D*D for diametral (d) tests							//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	ump Tests											
1	Core	d		80	100	23.9	8000	10186	2.35	1.37	3.22	77.2
2												
3												
4												
5												
6												
7												
8												
9		-										
10												
											Mean	77.2

Date: 24th February 2016 Test Report Ref:. STR: 447819

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 48862 Unknown 18/1/2016 18/1/2016 Depth Top:10.36 Depth Base:10.46 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447819 - Page 2 of 2

Client	Priority Cons	structio	n Lto	d								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48862											
Key : -												
-												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	licular te	o loadir	ng directi	ion		Р		ilure in Kl	
	ie core diam	neter fo	r axi	ial tests	5.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks	i.			ls (50)	Point lo	ad streng	th index
А	W*D minimu	ım x-se	ectio	nal area	a				F	Size co	rrection fa	actor
	For axial or i	irregula	r blc	ock test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
										· ·		
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	00	10	-	10 (00)	Strength (MPa)
*	*	*	*	*	*	*						etteriger (in a)
Axial, Block or Lu	ump Tests											
	•											
1	Core	а		60	70	14.9	4200	5348	2.79	1.19	3.31	79.3
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	79.3

Date: 24th February 2016 Test Report Ref:. STR: 447825

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 48864 Unknown 18/1/2016 18/1/2016 Depth Top:10.69 Depth Base:10.76 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447825 - Page 2 of 2

Client	Priority Cons	structio	n I to									
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48864											
Key : -												
<u> </u>		· .							D+D			
D	Always dista								D*D			(a) and irregular block (b) tests
W	Smallest wid	th perp	pend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests	i.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i								#			ar to fabric
D*D					0.377 -							
D*D	$= D^{T}D$ for di	= D*D for diametral (d) tests							//	l est pa	rallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	Imp Tests											
1	Core	а		60	60	13.0	3600	4584	2.84	1.15	3.25	78.0
2												
3												
4												
5												
7												
8	+											
9												
10	1											
											Mean	78.0

Date: 24th February 2016 Test Report Ref:. STR: 447831

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 48869 Unknown 18/1/2016 18/1/2016 Depth Top:13.35 Depth Base:13.45 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447831 - Page 2 of 2

Client	Priority Cons	structio	n I to	4								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48869	,										
•												
Key : -												
D	Always dista	ince be	twee	en plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular to	o loadir	g directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	i.	-			ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectio	nal area	à				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-							//		rallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D		-			Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	85	18.1	5100	6494	2.79	1.24	3.46	82.9
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	82.9

Date: 24th February 2016 Test Report Ref:. STR: 447833

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 48871 Unknown 18/1/2016 18/1/2016 Depth Top:13.70 Depth Base:13.80 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447833 - Page 2 of 2

Client	Priority Cons	structio	n I ta	4								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48871											
•												
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	ion		Р		ilure in Kl	
	ie core diam	neter fo	or axi	al tests	S.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectio	nal area	a				F	Size co	rrection fa	actor
	For axial or i	irregula	r blc	ock test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-							//		rallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D		-			Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	90	16.4	5400	6875	2.39	1.26	3.00	71.9
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	71.9

Date: 24th February 2016 Test Report Ref:. STR: 447834

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 48872 Unknown 18/1/2016 18/1/2016 Depth Top:16.30 Depth Base:16.40 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 447834 - Page 2 of 2

Client	Priority Cons	structio	n I ta	4										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 48872													
•														
Key : -														
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	Ith perp	bend	icular to	o loadir	ng direct	ion		Р	Load failure in KN				
	ie core diameter for axial tests.								ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index		
A	W*D minimum x-sectional area								F	Size co	rrection fa	actor		
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	_									Test parallel to fabric				
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D				- (/	Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	mp Tests													
1	Core	а		60	95	16.1	5700	7257	2.22	1.27	2.82	67.7		
2														
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	67.7		

Date: 24th February 2016 Test Report Ref:. STR: 447836

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 48874 Unknown 18/1/2016 18/1/2016 Depth Top:16.66 Depth Base:16.80 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447836- Page 2 of 2

Client	Priority Cons	structio	n Lto	ł										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 48874	ļ												
•														
Key : -														
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	,								Р		ilure in Kl			
	Smallest width perpendicular to loading direction ie core diameter for axial tests.								ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)					
Α	W =(W1 + W2)/2 for irregular blocks. W*D minimum x-sectional area								F	1	Point load strength index Size correction factor			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	$= D^*D \text{ for diametral (d) tests}$								//		rallel to fa			
				10313					"					
				_		_				_	. (==>)			
Sample	Sample	Test		D	W	P	A	D*D	ls	F	ls (50)	Approx. Compressive		
no *	type *	type *	*	mm *	mm *	KN *	=W*D					Strength (MPa)		
Axial, Block or Lu	Imn Tests													
1	Core	а		60	115	21.1	6900	8785	2.40	1.33	3.19	76.5		
2														
3														
4														
5														
6														
7														
8									-					
9														
10														
											Mean	76.5		

Date: 24th February 2016 Test Report Ref:. STR: 447839

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 48877 Unknown 18/1/2016 18/1/2016 Depth Top:26.20 Depth Base:26.36 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447839 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 48877													
•														
Key : -														
D	Always dista	nce he	twee	n nlate	n conta	act point	s		D*D	- 44/n	i for axial	(a) and irregular block (b) tests		
W	Smallest wic			•					P	= 4A/pi for axial (a) and irregular block (b) tests				
	ie core diam					ig uncer			ls					
					-				-			ngth index		
	W =(W1 + W2)/2 for irregular blocks.								ls (50)	1	ad streng			
A	W*D minimum x-sectional area								F	Size co	rrection fa	actor		
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								//	Test pa	rallel to fa	abric		
			Ĺ											
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D		10			Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	mp Tests													
1	Core	а		60	165	17.2	9900	12605	1.36	1.44	1.96	47.1		
2														
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	47.1		

Date: 24th February 2016 Test Report Ref:. STR: 447841

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 48879 Unknown 18/1/2016 18/1/2016 Depth Top:26.61 Depth Base:26.70 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447841 - Page 2 of 2

Client	Priority Cons	structio	n Lto	4											
Sample Number	S56595														
Date Recived	18.1.16														
Sample Ref	BH01 48879	,													
•															
Key : -															
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests			
W	Smallest wid	Ith perp	bend	icular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N			
	ie core diameter for axial tests.								ls	Uncorre	ected stre	ngth index			
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index			
А	W*D minimum x-sectional area								F	Size co	Size correction factor				
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric					
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	Test parallel to fabric				
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive			
no	type	type		mm	mm	KN	=W*D					Strength (MPa)			
*	*	*	*	*	*	*									
Axial, Block or Lu	mp Tests														
1	Core	а		60	85	13.2	5100	6494	2.03	1.24	2.52	60.5			
2															
3															
4															
5								-							
6															
7															
8															
9															
10															
											Mean	60.5			

Date: 24th February 2016 Test Report Ref:. STR: 447844

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 48882 Unknown 18/1/2016 18/1/2016 Depth Top:34.44 Depth Base:34.48 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447844 - Page 2 of 2

Client	Priority Cons	structio	n Lto	4											
Sample Number	S56595														
Date Recived	18.1.16														
Sample Ref	BH01 48882														
•															
Key : -															
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests			
W	Smallest wid	Ith perp	bend	icular te	o loadir	ng directi	ion		Р		ilure in Kl				
	ie core diameter for axial tests.								ls	Uncorre	ected stre	ngth index			
	W =(W1 +	W2)/2	for ir	regular	blocks	i.			ls (50)	Point lo	ad streng	th index			
A	W*D minimum x-sectional area								F	Size co	Size correction factor				
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric					
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	abric				
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive			
no	type	type		mm	mm	KN	=W*D					Strength (MPa)			
*	*	*	*	*	*	*									
Axial, Block or Lu	mp Tests														
1	Core	d		39	60	10.6	2340	2979	3.56	1.04	3.70	88.8			
2															
3															
4															
5															
6									-						
7															
8															
9															
10															
											Mean	88.8			

Date: 24th February 2016 Test Report Ref:. STR: 447846

Page 1 of 2

Order No:

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 48884 Unknown 18/1/2016 18/1/2016 Depth Top:34.73 Depth Base: 34.83 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR : 447846 - Page 2 of 2

Client	Priority Cons	structio	n I to	4										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 48884													
Key : -														
D	Always dista		two		n oont	oct point			D*D	_ 4 A /p	i for ovial	(a) and irregular block (b) tests		
												() 0 ()		
W	Smallest wid					ng directi	on		Р		ilure in Kl			
	ie core diam	neter fo	r axi	al tests	i.				ls	Uncorre	ected stre	ngth index		
	W = (W1 + W2)/2 for irregular blocks.								ls (50)	Point lo	ad streng	th index		
А	W*D minimum x-sectional area								F	Size correction factor				
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for di								//	Test parallel to fabric				
0	0	T		_	14/	_	•	D*D		-	1. (50)	A		
Sample	Sample	Test		D	W	P	A =W*D	D*D	ls	F	ls (50)	Approx. Compressive		
	type	type *	*	mm *	mm *	KN *	=vv*D					Strength (MPa)		
Axial, Block or Lu	ump Tosts													
Axiai, Diock of Et														
1	Core	а		60	95	14.8	5700	7257	2.04	1.27	2.59	62.2		
2	0010			00		11.0	0100	1201	2.01	1.27	2.00	02.2		
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	62.2		

Date: 24th February 2016 Test Report Ref:. STR: 447848

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 48886 Unknown 18/1/2016 18/1/2016 Depth Top:44.45 Depth Base:44.54 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447848 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48886	;										
•												
Key : -												
D	Always dista	ince be	twee	en plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests		-			ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectio	nal area	à				F	Size co	rrection fa	actor
	For axial or i	irregula	r blc	ock test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di								rallel to fa			
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	75	16.8	4500	5730	2.93	1.21	3.53	84.8
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	84.8

Date: 24th February 2016 Test Report Ref:. STR: 447851

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 48888 Unknown 18/1/2016 18/1/2016 Depth Top:44.79 Depth Base:44.90 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447851- Page 2 of 2

Client	Priority Cons	structio	n Lto	1								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48888											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests	i.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectior	nal area	à				F	Size co	rrection fa	actor
	For axial or i	irregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for diametral (d) tests								//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	90	12.1	5400	6875	1.76	1.26	2.21	53.0
2												
3												
4												
5												
7				\vdash								
8												
9	1											
10	1											
											Mean	53.0

Date: 24th February 2016 Test Report Ref:. STR: 447858

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 48894 Unknown 18/1/2016 18/1/2016 Depth Top:56.50 Depth Base:56.60 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447858 - Page 2 of 2

Client	Priority Cons	structio	n I to									
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48894											
Key : -												
		· .							D+D			
D	Always dista								D*D			(a) and irregular block (b) tests
W	Smallest wid	th perp	pend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	-								#			ar to fabric
D*D		For axial or irregular block test (= D*D for diametral (d) tests										
D*D	$= D^{T}D$ for di	ametra	ii (a)	tests					//	l est pa	rallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	ump Tests											
	-											
1	Core	а		60	70	12.1	4200	5348	2.26	1.19	2.68	64.4
2												
3												
4 5												
6												
7												
8												
9												
10	1											
									_		Mean	64.4

Date: 24th February 2016 Test Report Ref:. STR: 447860

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 48896 Unknown 18/1/2016 18/1/2016 Depth Top:56.85 Depth Base:56.93 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR :447860 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48896	;										
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	bend	icular te	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ection	nal area	a				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di						//		rallel to fa			
	2 2 101 4									1.001.00		
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	00	10	•	10 (00)	Strength (MPa)
*	*	*	*	*	*	*						ottoligit (in a)
Axial, Block or Lu	mp Tests											
1	Core	а		60	70	12.0	4200	5348	2.24	1.19	2.66	63.9
2												
3												
4												
5												
6												
7		-										
8												
<u> </u>	1											
10											Mean	63.9

Date: 24th February 2016 Test Report Ref:. STR: 447863

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 48899 Unknown 18/1/2016 18/1/2016 Depth Top:62.76 Depth Base:62.86 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR :447863- Page 2 of 2

Client	Priority Cons	structio	n I ta	1								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48899											
Key : -												
D	Always dista								D*D			(a) and irregular block (b) tests
W	Smallest wid	th perp	pend	icular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests	i.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	-								#			ar to fabric
		or axial or irregular block test = D*D for diametral (d) tests										
D*D	= D*D for di	ametra	ul (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	Imp Tests											
1	Core	а		60	85	18.2	5100	6494	2.80	1.24	3.47	83.4
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	83.4

Date: 24th February 2016 Test Report Ref:. STR: 447865

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50857 Unknown 18/1/2016 18/1/2016 Depth Top:63.05 Depth Base:63.16 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447865 - Page 2 of 2

Client	Priority Cons	structio	n I to									
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50857											
Key : -												
<u> </u>		· .							D+D			
D	Always dista								D*D			(a) and irregular block (b) tests
W	Smallest wid	th perp	pend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i					- D - W			#			ar to fabric
D*D			0.377 -									
D*D	= D*D for di	ametra	ii (a)	tests					//	l est pa	rallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	ump Tests											
	-											
1	Core	а		60	125	14.6	7500	9549	1.53	1.35	2.07	49.6
2												
3												
4 5												
6												
7												
8												
9												
10	1											
-											Mean	49.6

Date: 24th February 2016 Test Report Ref:. STR: 447870

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50862 Unknown 18/1/2016 18/1/2016 Depth Top:66.00 Depth Base:66.10 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447870 - Page 2 of 2

Client	Priority Cons	structio	n Lto	4								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50862											
•												
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	bend	icular te	o loadir	ng direct	ion		Р		ilure in Kl	
	ie core diam	neter fo	r axi	al tests	5.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectio	nal area	a				F	Size co	rrection fa	actor
	For axial or i	rregula	r blc	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	tests					//	Test pa	rallel to fa	abric		
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D				- (/	Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	80	14.5	4800	6112	2.37	1.22	2.90	69.6
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	69.6

Date: 24th February 2016 Test Report Ref:. STR: 447872

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50864 Unknown 18/1/2016 18/1/2016 Depth Top:66.34 Depth Base:66.45 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447872- Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50864											
Key : -												
D	Always dista	ince be	twee	en plate	n conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	bend	icular to	o loadir	g directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu								F	1	rrection fa	
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di							//		Irallel to fa		
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						~ ~ /
Axial, Block or Lu	mp Tests											
1	Core	а		60	105	16.1	6300	8021	2.01	1.30	2.61	62.6
2												
3												
4												
5												
6												
7		-										
8												
<u>9</u> 10												
10												62.6
											Mean	02.0

Date: 24th February 2016 Test Report Ref:. STR: 447880

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50872 Unknown 18/1/2016 18/1/2016 Depth Top:79.10 Depth Base:79.18 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR :447880 - Page 2 of 2

Client	Priority Cons	structio	n I ta	4								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50872											
	2.101.00012											
Key : -												
, í												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid					•			 P	· ·	ilure in Kl	() 3 ()
	ie core diam								ls			ngth index
	W =(W1 +								ls (50)		ad streng	•
Α	W*D minimu			-					F	1	rrection fa	
	-								#			ar to fabric
545		For axial or irregular block test 0 = D*D for diametral (d) tests										
D*D	= D*D for di	ametra	il (d)	tests					//	l est pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	85	11.3	5100	6494	1.74	1.24	2.16	51.8
2												
3												
4												
5												
<u> </u>												
8												
9												
10												
											Mean	51.8

Date: 24th February 2016 Test Report Ref:. STR: 447882

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50874 Unknown 18/1/2016 18/1/2016 Depth Top:79.40 Depth Base:79.52 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447882 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50874	Ļ										
Key : -												
D	Always dista	ance be	twee	en plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	dth perp	bend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	um x-se	ectior	nal area	à				F	Size co	rrection fa	actor
	For axial or i	irregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di						//		rallel to fa			
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	110	12.8	6600	8403	1.52	1.31	2.00	48.0
2												
3												
4												
5	1											
7	1											
8												
9												
10												
											Mean	48.0

Date: 24th February 2016 Test Report Ref:. STR: 447891

Page 1 of 2

Order No:

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50883 Unknown 18/1/2016 18/1/2016 Depth Top:92.35 Depth Base:92.47 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447891- Page 2 of 2

Sample Ref	BH01 50883											
Key : -												
D	Always dista	nce be	twee	n plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular te	o loadir	ng directi	ion		Р		ilure in Kl	
	ie core diam	neter fo	r axi	al tests	S.	Ŭ			ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)		ad streng	*
Α	W*D minimu			-					F		rrection fa	
	For axial or i					< D < W			#			ar to fabric
D*D	= D*D for di						//		rallel to fa			
			(G)						,,	1000.00		
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						× , .
Axial, Block or Lu	mp Tests											
	-											
1	Core	а		60	85	16.0	5100	6494	2.46	1.24	3.05	73.3
2												
4												
5												
6												
7												
8												
9												
10												
											Mean	73.3

Date: 24th February 2016 Test Report Ref:. STR: 447893

Page 1 of 2

Order No:

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50885 Unknown 18/1/2016 18/1/2016 Depth Top:92.70 Depth Base:92.79 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447893- Page 2 of 2

Client	Priority Cons	structio	n Ltc	1								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50885											
Key : -												
D	Always dista	nce be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	lth perp	bendi	icular te	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	5.				ls	Uncorre	ected strei	ngth index
	W =(W1 + V	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu	ım x-se	ectior	nal area	a				F	Size co	rrection fa	actor
	For axial or i	For axial or irregular block tes = D*D for diametral (d) tests				< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for diametral (d) tests								//	Test pa	rallel to fa	bric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	80	14.8	4800	6112	2.42	1.22	2.96	71.1
2												
3												
4												
5												
6												
7												
8												
<u>9</u> 10												
10												74.4
											Mean	71.1

Date: 24th February 2016 Test Report Ref:. STR: 447901

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50893 Unknown 18/1/2016 18/1/2016 Depth Top:108.15 Depth Base:108.22 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447901- Page 2 of 2

Client	Priority Cons	structio	n Lto	1										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 50893													
Key : -														
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	th perp	bend	icular to	o loadir	ng directi	on		Р	Load failure in KN				
	ie core diameter for axial tests.								ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index		
A	W*D minimu	ım x-se	ectior	nal area	a				F	Size co	rrection fa	actor		
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for di	-							//	Test parallel to fabric				
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	ls (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D					Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	mp Tests													
1	Core	а		60	70	11.5	4200	5348	2.15	1.19	2.55	61.2		
2														
3														
4														
5														
6														
7														
8														
9 10														
10												64.0		
											Mean	61.2		

Date: 24th February 2016 Test Report Ref:. STR: 447903

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50895 Unknown 18/1/2016 18/1/2016 Depth Top:108.51 Depth Base:108.62 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447903 - Page 2 of 2

Client	Priority Cons	structio	n I to											
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 50895													
Key : -														
<u> </u>		L							D+D					
D	Always dista								D*D			(a) and irregular block (b) tests		
W	Smallest wid	Ith perp	pend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N		
	ie core diam	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index		
А	W*D minimu								F		rrection fa			
									#	Test perpendicular to fabric				
D*D	For axial or irregular block test 0.3W < D < W									Test parallel to fabric				
D*D	$= D^{T}D$ for di	ametra	ii (a)	tests					//	Test pa	irallel to fa			
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D					Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	Imp Tests													
1	Core	а		60	75	13.9	4500	5730	2.43	1.21	2.92	70.2		
2														
3														
4														
5														
7														
8	+													
9														
10	1													
											Mean	70.2		

Date: 24th February 2016 Test Report Ref:. STR: 447909

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50901 Unknown 18/1/2016 18/1/2016 Depth Top:115.89 Depth Base:116.05 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447909- Page 2 of 2

Client	Priority Cons	structio	n Lto	4											
Sample Number	S56595														
Date Recived	18.1.16														
Sample Ref	BH01 50901														
•															
Key : -															
D	Always dista	ince be	twee	en plate	en conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests			
W	Smallest wid	Ith perp	bend	icular te	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N			
	ie core diam	neter fo	or axi	al tests	i.				ls	Uncorre	ected strei	ngth index			
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index			
A	W*D minimu	ım x-se	ection	nal area	a				F	Size co	Size correction factor				
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric					
D*D	= D*D for di	-								Test parallel to fabric					
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive			
no	type	type		mm	mm	KN	=W*D					Strength (MPa)			
*	*	*	*	*	*	*									
Axial, Block or Lu	mp Tests														
1	Core	а		60	110	14.0	6600	8403	1.67	1.31	2.19	52.5			
2															
3															
4															
5															
6															
7															
8															
<u>9</u> 10															
10												50.5			
											Mean	52.5			

Date: 24th February 2016 Test Report Ref:. STR: 447911

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50903 Unknown 18/1/2016 18/1/2016 Depth Top:116.29 Depth Base:116.39 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR :447911- Page 2 of 2

Client	Priority Cons	structio	n I to	4									
Sample Number	S56595												
Date Recived	18.1.16												
Sample Ref	BH01 50903												
•													
Key : -													
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests	
W	Smallest wid	th perp	bend	icular te	o loadir	ng direct	ion		Р		ilure in Kl		
	ie core diam	neter fo	or axi	al tests	5.				ls	Uncorre	ected stre	ngth index	
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index	
A	W*D minimu	ım x-se	ectio	nal area	a				F	Size co	rrection fa	actor	
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric			
D*D	= D*D for di	-								Test parallel to fabric			
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive	
no	type	type		mm	mm	KN	=W*D				- (/	Strength (MPa)	
*	*	*	*	*	*	*							
Axial, Block or Lu	ump Tests												
1	Core	а		60	95	14.8	5700	7257	2.04	1.27	2.59	62.2	
2													
3													
4													
5													
6													
7													
8													
9													
10													
											Mean	62.2	

Date: 24th February 2016 Test Report Ref:. STR: 447916

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50908 Unknown 18/1/2016 18/1/2016 Depth Top:128.80 Depth Base:128.89 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton – Assistant Laboratory Manager

Point load test results STR : 447916- Page 2 of 2

Client	Priority Cons	structio	n Lto	d										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 50908													
Key : -														
-														
D	Always dista	ince be	twee	en plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid								Р		ilure in Kl			
	ie core diam					J	-		ls	Uncorre	ected stre	ngth index		
	W =(W1 +								ls (50)		ad streng			
А	W*D minimu					-			F	1	rrection fa			
	For axial or irregular block test $0.3W < D < W$								#	Test perpendicular to fabric				
D*D	$= D^*D \text{ for diametral (d) tests}$								//		rallel to fa			
			li (u)	lesis					11	Testpa				
									-					
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	ls (50)	Approx. Compressive		
	type	type		mm	mm	KN	=W*D					Strength (MPa)		
	*	*	*	*	*	*								
Axial, Block or Lu	ump lests													
1	Core	а		60	75	16.0	4500	5730	2.79	1.21	3.37	80.8		
2	Cole	a		60	75	10.0	4300	5730	2.19	1.21	3.37	00.0		
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	80.8		

Date: 24th February 2016 Test Report Ref:. STR: 447918

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50910 Unknown 18/1/2016 18/1/2016 Depth Top:129.14 Depth Base:129.21 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447918 - Page 2 of 2

Client	Priority Cons	structio	n Lto	4										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 50910	,												
•														
Key : -														
D	Always dista	nce be	twee	en plate	n conta	act point	9		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid								P		ilure in Kl			
	ie core diam					ig anoot			ls			ngth index		
	W =(W1 +								ls (50)		ad streng	•		
A				-		•			F	1				
A	W*D minimum x-sectional area									Size correction factor				
	For axial or irregular block test 0.3W < D < W								#		Test perpendicular to fabric			
D*D	= D*D for di	ametra	l (d)	tests					//	Test pa	rallel to fa	abric		
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D				, <i>, , , , , , , , , , , , , , , , , , </i>	Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	ump Tests													
1	Core	а		60	60	14.0	3600	4584	3.05	1.15	3.50	84.0		
2														
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	84.0		

Date: 24th February 2016 Test Report Ref:. STR: 447922

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50914 Unknown 18/1/2016 18/1/2016 Depth Top:133.21 Depth Base:133.32 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton – Assistant Laboratory Manager

Point load test results STR : 447922 - Page 2 of 2

Client	Priority Cons	structio	n I to	4						[
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50914											
Key : -												
		· .							D+D			
D	Always dista								D*D			(a) and irregular block (b) tests
W	Smallest wid	th perp	pend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests	i.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i								#			ar to fabric
D*D					0.377 -							
D*D	$= D^{T}D$ for di	= D*D for diametral (d) tests							//	l est pa	rallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	Imp Tests											
	-											
1	Core	а		60	85	15.1	5100	6494	2.33	1.24	2.88	69.2
2												
3												
4 5												
6												
7												
8												
9												
10												
											Mean	69.2

Date: 24th February 2016 Test Report Ref:. STR: 447924

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50916 Unknown 18/1/2016 18/1/2016 Depth Top:133.54 Depth Base:133.63 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR :447924 - Page 2 of 2

Sample Number S5 Date Recived	riority Const 56595 18.1.16 H01 50916											
Date Recived	18.1.16											
Key:-												
D Al	lways distar	nce he	twoo	n nlate	n conta	act points	2		D*D	- 44/ni	i for avial	(a) and irregular block (b) tests
				•		•			P		ilure in Kl	() 3 ()
	mallest widt					ig directi	on		-			-
	e core diam								ls			ngth index
W	V =(W1 + V	N2)/2 f	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A W	/*D minimur	m x-se	ctior	nal area	a				F	Size co	rrection fa	actor
Fc	or axial or ir	regula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
	D*D for dia	-							//	Test pa	rallel to fa	bric
	2 2 101 410		. ()									
Osmala	Comula	Test			14/		^	D*D	1-	-	1- (50)	Arranes Corresponding
	Sample	Test		D	W	P	A =W*D	D*D	ls	F	ls (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	KN *	= * * D					Strength (MPa)
Axial, Block or Lump	n Tosts											
Axial, DIOCK OF LUIII	p 16313											
1 Co	ore	а		60	85	13.5	5100	6494	2.08	1.24	2.58	61.8
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	61.8

Date: 24th February 2016 Test Report Ref:. STR: 447931

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50923 Unknown 18/1/2016 18/1/2016 Depth Top:146.20 Depth BaseBase:146.30 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447931 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50923											
•												
Key : -												
D	Always dista	i Ince he	twee	n nlate	en conta	act point	9	_	D*D	- 44/n	i for avial	(a) and irregular block (b) tests
W	Smallest wid								P		ilure in Kl	
	ie core diam					ig unect			ls			
									-			ngth index
	W =(W1 +			-					ls (50)	1	ad streng	
A	W*D minimu	ım x-se	ectio	nal area	a				F	Size co	rrection fa	actor
	For axial or i	irregula	r blc	ock test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
			Ĺ									
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	00	10		10 (00)	Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	85	12.0	5100	6494	1.85	1.24	2.29	55.0
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	55.0

Date: 24th February 2016 Test Report Ref:. STR: 447933

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50925 Unknown 18/1/2016 18/1/2016 Depth Top:146.52 Depth Base146.61 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447933 - Page 2 of 2

Client	Priority Cons	structio	n I to	4								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50925											
•												
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	bend	icular to	o loadir	ng directi	ion		Р		ilure in Kl	
	ie core diam	neter fo	r axi	al tests	5.	-			ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectio	nal area	à				F	Size co	rrection fa	actor
	For axial or i	rregula	r blc	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
										· ·		
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D				- (/	Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	95	14.9	5700	7257	2.05	1.27	2.61	62.6
2												
3												
4												
5								-				
6												
7												
8												
9												
10												
											Mean	62.6

Date: 24th February 2016 Test Report Ref:. STR: 447942

Page 1 of 2

Order No:

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50933 Unknown 18/1/2016 18/1/2016 Depth Top:156.33 Depth Base:156.44 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447942- Page 2 of 2

Client Sample Number	Priority Cons S56595	structio	n Ltc	1								
Date Recived	18.1.16											
Sample Ref	BH01 50933											
	BII01 30933	1										
	-											
Key : -												
D	Always dista	nce be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	lth perp	end	icular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	i.				ls	Uncorre	ected strei	ngth index
	W =(W1 + V	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu	ım x-se	ctior	nal area	a				F	Size co	rrection fa	actor
	For axial or in	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for dia	ametra	l (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	Imp Tests											
	<u> </u>											
1	Core	а		60	110	11.2	6600	8403	1.33	1.31	1.75	42.0
2	ļ!											
3 4										}		
5	+											
6	+											
7	+											
8	1											
9												
10												
											Mean	42.0

Date: 24th February 2016 Test Report Ref:. STR: 447944

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50935 Unknown 18/1/2016 18/1/2016 Depth Top:156.68 Depth Base:156.76 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447944- Page 2 of 2

Client	Priority Cons	tructio	n l tr	1								
Sample Number				ג 								
Date Recived	S56595											
	18.1.16											
Sample Ref	BH01 50935	1										
Key : -												
D	Always dista	nce be	twee	en plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	bend	icular te	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectio	nal area	à				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	90	10.8	5400	6875	1.57	1.26	1.97	47.3
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	47.3

Date: 24th February 2016 Test Report Ref:. STR: 447946

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50937 Unknown 18/1/2016 18/1/2016 Depth Top:165.17 Depth Base:165.25 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447946 - Page 2 of 2

Client	Priority Cons	structio	n Lto									
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50937											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core dian	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectior	nal area	à				F		rrection fa	
	For axial or i	irregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di								//		Irallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	75	15.4	4500	5730	2.69	1.21	3.24	77.7
2												
3												
4												
<u> </u>												
7												
8												
9										1		
10												
											Mean	77.7

Date: 24th February 2016 Test Report Ref:. STR: 447948

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50939 Unknown 18/1/2016 18/1/2016 Depth Top:166.00 Depth Base:166.10 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447948 - Page 2 of 2

Client	Priority Cons	structio	n I to									
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50939											
Key : -												
<u> </u>		· .							D+D			
D	Always dista								D*D			(a) and irregular block (b) tests
W	Smallest wid	th perp	pend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i					- D - W			#			ar to fabric
D*D					0.377 -							
D*D	= D*D for diametral (d) tests								//	Test pa	rallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	ump Tests											
	-											
1	Core	а		60	85	14.1	5100	6494	2.17	1.24	2.69	64.6
2												
3												
4 5												
6												
7												
8												
9												
10	1											
											Mean	64.6

Date: 24th February 2016 Test Report Ref:. STR: 447953

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50944 Unknown 18/1/2016 18/1/2016 Depth Top:175.18 Depth Base:175.26 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447953 - Page 2 of 2

Client	Priority Cons	structio	n Lto	4								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50944											
•												
Key : -												
-												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular te	o loadir	g directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	5.	-			ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectio	nal area	a				F	Size co	rrection fa	actor
	For axial or i	rregula	r blc	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-							//		rallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D		-			Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	85	12.8	5100	6494	1.97	1.24	2.44	58.6
2												
3												
4												
5								-				
6												
7												
8												
9												
10												
											Mean	58.6

Date: 24th February 2016 Test Report Ref:. STR: 447956

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50946 Unknown 18/1/2016 18/1/2016 Depth Top:175.50 Depth Base:175.59 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton – Assistant Laboratory Manager

Point load test results STR :447956- Page 2 of 2

Client	Priority Cons	structio	n Lto	4								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50944											
•												
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular te	o loadir	g directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	5.	-			ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectio	nal area	a				F	Size co	rrection fa	actor
	For axial or i	rregula	r blc	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-							//		rallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D		-			Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	85	12.8	5100	6494	1.97	1.24	2.44	58.6
2												
3												
4												
5								-				
6												
7												
8												
9												
10												
											Mean	58.6

Date: 24th February 2016 Test Report Ref:. STR: 447961

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50951 Unknown 18/1/2016 18/1/2016 Depth Top:183.90 Depth Base:184.20 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton – Assistant Laboratory Manager

Point load test results STR : 447961 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50951											
•												
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular te	o loadir	g directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests	5.	-			ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu	ım x-se	ectio	nal area	à				F	Size co	rrection fa	actor
	For axial or i	irregula	r blc	ock test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	110	13.0	6600	8403	1.55	1.31	2.03	48.8
2												
3												
4												
5												
6									-			
7												
8												
9												
10												
											Mean	48.8

Date: 24th February 2016 Test Report Ref:. STR: 447963

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50953 Unknown 18/1/2016 18/1/2016 Depth Top:184.25 Depth Base:184.34 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton – Assistant Laboratory Manager

Point load test results STR :447963- Page 2 of 2

Client	Priority Cons	structio	n Lto	4								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50953											
•												
Key : -												
D	Always dista	nce be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid								P		ilure in Kl	
	ie core diam					ig anoot			ls			ngth index
	W =(W1 +								ls (50)		ad streng	•
Α	W*D minimu			-		•			F		rrection fa	
A	-								-			
	For axial or i	-			0.300 <	< D < W			#			ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					/	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D				, <i>, , , , , , , , , , , , , , , , , , </i>	Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	ump Tests											
1	Core	а		60	90	16.0	5400	6875	2.33	1.26	2.92	70.1
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	70.1

Date: 24th February 2016 Test Report Ref:. STR: 447967

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50957 Unknown 18/1/2016 18/1/2016 Depth Top:194.60 Depth Base:194.67 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton – Assistant Laboratory Manager

Point load test results STR : 447967 - Page 2 of 2

Client	Priority Cons	structio	n I ta	4						[
Sample Number	S56595												
Date Recived	18.1.16												
Sample Ref	BH01 50957												
	BH01 30337												
Key : -													
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests	
W	Smallest wid	th perp	bend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N	
	ie core diam								ls	Uncorre	ected stre	ngth index	
	W = (W1 + W2)/2 for irregular blocks.								ls (50)	Point lo	ad streng	th index	
A	W*D minimu	nal area	a				F	Size co	rrection fa	actor			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric			
D*D	= D*D for di	tests					//	Test parallel to fabric					
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive	
no	type	type		mm	mm	KN	=W*D					Strength (MPa)	
*	*	*	*	*	*	*							
Axial, Block or Lu	mp Tests												
								150.1	4 75			10.0	
1 2	Core	а		60	60	8.0	3600	4584	1.75	1.15	2.00	48.0	
3													
4													
5													
6													
7													
8													
9													
10													
											Mean	48.0	

Date: 24th February 2016 Test Report Ref:. STR: 447969

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50959 Unknown 18/1/2016 18/1/2016 Depth Top:194.90 Depth Base:194.99 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447969 - Page 2 of 2

Client	Priority Con	structio	n I to	4										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 50959	2												
	DI101 30330													
Key : -														
109.														
		· ·												
D	Always dista								D*D			(a) and irregular block (b) tests		
W	Smallest with	dth perp	bend	icular to	o loadir	ng directi	on		Р	Load failure in KN				
	ie core dian	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	reaular	blocks				ls (50)	Point lo	ad streng	th index		
А									F		rrection fa			
	W*D minimum x-sectional area								#	Test perpendicular to fabric				
	For axial or irregular block test 0.3W < D < W													
D*D	= D*D for diametral (d) tests								//	Test parallel to fabric				
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D					Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	Imp Tests													
1	Core	а		60	80	12.0	4800	6112	1.96	1.22	2.40	57.6		
2														
3														
4														
5														
6														
7														
8														
9														
10												53.0		
											Mean	57.6		

Date: 24th February 2016 Test Report Ref:. STR: 447972

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50962 Unknown 18/1/2016 18/1/2016 Depth Top:204.62 Depth Base:204.70 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447972- Page 2 of 2

Client	Priority Cons	structio	n Lto	d										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 50962													
Key : -														
-														
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	th perp	bend	licular te	o loadir	ng directi	on		Р	Load failure in KN				
	ie core diameter for axial tests.								ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks	i.			ls (50)	Point lo	ad streng	th index		
А	W*D minimu	nal area	a				F	Size co	Size correction factor					
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								//	Test parallel to fabric				
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D	00	10		10 (00)	Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	mp Tests													
1	Core	а		60	80	17.4	4800	6112	2.85	1.22	3.48	83.6		
2														
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	83.6		

Date: 11th April 2016 Test Report Ref:. STR: 447974

Page 1 of 2

Order No:

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50964 Unknown 18/1/2016 18/1/2016 Depth Top:204.95 Depth Base:205.02 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447974 - Page 2 of 2

Client	Priority Cons	structio	n Lto	4									
Sample Number	S56595												
Date Recived	18.1.16												
Sample Ref	BH01 50964												
•													
Key : -													
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests	
W	Smallest wid	Ith perp	bend	icular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N	
	ie core diam	neter fo	r axi	al tests	5.				ls	Uncorre	ected stre	ngth index	
	W = (W1 + W2)/2 for irregular blocks.								ls (50)	Point lo	ad streng	th index	
A	W*D minimum x-sectional area								F	Size co	rrection fa	actor	
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric			
D*D	= D*D for diametral (d) tests								//	Test parallel to fabric			
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive	
no	type	type		mm	mm	KN	=W*D					Strength (MPa)	
*	*	*	*	*	*	*							
Axial, Block or Lu	mp Tests												
1	Core	а		60	85	13.2	5100	6494	2.03	1.24	2.52	60.5	
2													
3													
4													
5								-					
6									-				
7													
8													
9													
10													
											Mean	60.5	

Date: 24th February 2016 Test Report Ref:. STR: 447980

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50970 Unknown 18/1/2016 18/1/2016 Depth Top:211.77 Depth Base:211.85 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton – Assistant Laboratory Manager

Point load test results STR : 447980- Page 2 of 2

Client	Priority Cons	structio	n Lto	ł											
Sample Number	S56595														
Date Recived	18.1.16														
Sample Ref	BH01 50970														
Key : -															
-															
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests			
W	Smallest wid	th perp	bend	icular te	o loadir	Ig directi	ion		Р		ilure in Kl				
	ie core diam	neter fo	r axi	al tests	5.	-			ls	Uncorre	ected stre	ngth index			
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index			
А	W*D minimu	ım x-se	ection	nal area	a				F	Size co	Size correction factor				
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric					
D*D	= D*D for diametral (d) tests									Test pa	rallel to fa	abric			
										· ·					
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive			
no	type	type		mm	mm	KN	=W*D					Strength (MPa)			
*	*	*	*	*	*	*									
Axial, Block or Lu	ump Tests														
1	Core	а		60	75	11.2	4500	5730	1.95	1.21	2.36	56.5			
2															
3															
4															
5															
6															
7															
8															
<u>9</u> 10															
10															
											Mean	56.5			

Point load test results STR : 447982- Page 2 of 2

Client	Priority Cons	structio	n Lto	ł											
Sample Number	S56595														
Date Recived	18.1.16														
Sample Ref	BH01 50972														
Key : -															
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests			
W	Smallest wid	Ith perp	end	icular to	o loadir	ng directi	ion		Р	Load failure in KN					
	ie core diam	neter fo	r axi	al tests	5.				ls	Uncorre	ected stre	ngth index			
	W =(W1 + W2)/2 for irregular blocks.								ls (50)	Point lo	ad streng	th index			
A	W*D minimum x-sectional area								F	Size co	Size correction factor				
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric					
D*D	= D*D for diametral (d) tests								//	Test parallel to fabric					
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive			
no	type	type		mm	mm	KN	=W*D					Strength (MPa)			
*	*	*	*	*	*	*									
Axial, Block or Lu	Imp Tests														
1	Core	а		60	100	17.0	6000	7639	2.23	1.29	2.86	68.7			
2															
3															
4															
5															
6															
7															
8															
<u>9</u> 10															
10												<u> </u>			
											Mean	68.7			

Date: 24th February 2016 Test Report Ref:. STR: 447982

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50972 Unknown 18/1/2016 18/1/2016 Depth Top:212.10 Depth Base:212.20 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Date: 24th February 2016 Test Report Ref:. STR: 447989

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50979 Unknown 18/1/2016 18/1/2016 Depth Top:225.65 Depth Base:225.74 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447989- Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50979)										
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	bend	icular te	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests	i.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks	-			ls (50)	Point lo	ad streng	th index
А	W*D minimu	ım x-se	ection	nal area	à				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D				, <i>, , , , , , , , , , , , , , , , , , </i>	Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	95	19.1	5700	7257	2.63	1.27	3.34	80.3
2												
3												
4												
5												
<u> </u>												
8												
9												
10												
											Mean	80.3

Date: 24th February 2016 Test Report Ref:. STR: 447991

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50981 Unknown 18/1/2016 18/1/2016 Depth Top:225.95 Depth Base:226.03 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447991 Page 2 of 2

Client	Priority Cons	structio	n I ta	4								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50981											
	BH01 30301											
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	i.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
<u>N</u>	-								#			
	For axial or i				0.300 <	< D < W						ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	95	17.2	5700	7257	2.37	1.27	3.01	72.3
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	72.3

Date: 24th February 2016 Test Report Ref:. STR: 447995

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50985 Unknown 18/1/2016 18/1/2016 Depth Top:231.65 Depth Base:231.78 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447994- Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50985	;										
•												
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid								 P		ilure in Kl	
	ie core diam					. <u>g</u>			ls			ngth index
	W =(W1 +								ls (50)		ad streng	
Α	W*D minimu					-			F		rrection fa	
	For axial or i					< D < W			#			ar to fabric
D*D	= D*D for di	-			0.011						rallel to fa	
			l (u)	16313						Testpe		
		_							-			
Sample	Sample	Test		D	W	P	A	D*D	ls	F	ls (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Axial, Block or Lu						-						
AXIAI, BIOCK OF LU												
1	Core	а		60	120	15.1	7200	9167	1.65	1.34	2.21	53.0
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	53.0

Date: 24th February 2016 Test Report Ref:. STR: 447997

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50987 Unknown 18/1/2016 18/1/2016 Depth Top:232.00 Depth Base:232.10 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 447997- Page 2 of 2

Client	Priority Cons	structio	n I to	4								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50987											
Key : -												
D	Always dista	ince be	twee	en plate	n conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam					Ŭ			ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu			-					F		rrection fa	
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-							//		rallel to fa	
										1001 pd		
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	70	14.0	4200	5348	2.62	1.19	3.11	74.6
2												
3												
4												
5												
6												
7		-										
8												
10												
10												74.6
											Mean	74.0

Date: 24th February 2016 Test Report Ref:. STR: 448003

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50993 Unknown 18/1/2016 18/1/2016 Depth Top:242.82 Depth Base:242.92 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 448003- Page 2 of 2

Client	Priority Cons	structio	n Lto	ł						[
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50993	5										
Key : -												
D	Always dista	nce be	twee	en plate	en conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	5.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
A	W*D minimu								F		rrection fa	
	For axial or i	irregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-									rallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	ump Tests											
1	Core	а		60	95	12.8	5700	7257	1.76	1.27	2.24	53.8
2												
3												
4												
5												
6												
7 8												
9												
10												
											Mean	53.8

Date: 24th February 2016 Test Report Ref:. STR: 448005

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50995 Unknown 18/1/2016 18/1/2016 Depth Top:243.14 Depth Base:243.23 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 448005 - Page 2 of 2

Client	Priority Cons	structio	n I ta	4								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50995											
	BH01 30333	,										
Key : -												
D	Always dista	ince he	two	n nlate	n conta	act point	e		D*D	$-4\Delta/n$	i for avial	(a) and irregular block (b) tests
W	Smallest wid								<u>Р</u>		ilure in Kl	• • •
V	ie core diam					ig ullect			-			
									ls			ngth index
	W =(W1 +					•			ls (50)		ad streng	
A	W*D minimu	ım x-se	ctio	nal area	à				F	Size co	rrection fa	actor
	For axial or i	irregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	ıl (d)	tests					//	Test pa	rallel to fa	abric
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	ump Tests											
1	Core	а		60	85	14.1	5100	6494	2.17	1.24	2.69	64.6
2												
3												
4												
5												
6												
7 8												
9												
10	1											
10											Mean	64.6

Date: 24th February 2016 Test Report Ref:. STR: 448007

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50997 Unknown 18/1/2016 18/1/2016 Depth Top:251.81 Depth Base:251.95 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 448007 - Page 2 of 2

Client	Priority Cons	structio	n I to									
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50997											
	Differ eccer											
Key : -												
<u> </u>		· .							D+D			
D	Always dista								D*D			(a) and irregular block (b) tests
W	Smallest wid	th perp	pend	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i								#			ar to fabric
D*D					0.377 -							
D*D	$= D^{T}D$ for di	= D*D for diametral (d) tests							//	Test pa	rallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	Imp Tests											
	-											
1	Core	а		60	110	14.0	6600	8403	1.67	1.31	2.19	52.5
2												
3												
4 5												
6												
7												
8												
9												
10												
											Mean	52.5

Date: 24th February 2016 Test Report Ref:. STR: 448009

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50999 Unknown 18/1/2016 18/1/2016 Depth Top:252.22 Depth Base:252.32 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 448009- Page 2 of 2

Client	Priority Cons	structio	n I to	4								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50999											
	2.10100000											
Key : -												
D	Always dista	ince be	twee	en plate	n conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam					-			ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu			-					F		rrection fa	
	For axial or i	rregula	r blc	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-							//		rallel to fa	
			(a)							1001 pd		
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	Imp Tests											
1	Core	а		60	90	14.0	5400	6875	2.04	1.26	2.56	61.4
2												
3												
4												
5												
6												
7		-										
8												
<u>9</u> 10												
10												61.4
											Mean	01.4

Date: 24th February 2016 Test Report Ref:. STR: 448011

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 51001 Unknown 18/1/2016 18/1/2016 Depth Top:259.72 Depth Base:259.82 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR : 448011- Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 51001											
Key : -												
-												
D	Always dista	ince be	twee	en plate	en conta	act points	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	bend	icular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests	i.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)		ad streng	•
Α	W*D minimu			-		-			F		rrection fa	
	For axial or i					- D - W			#			ar to fabric
D*D		-			0.000							
U^*U	= D*D for di	ametra	ii (a)	tests					//	Test pa	rallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D		-			Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	ump Tests											
					0.5	44.0	5400	0.40.4	0.40	4.04	0.07	04.4
1 2	Core	а		60	85	14.0	5100	6494	2.16	1.24	2.67	64.1
3												
4												
5												
6	1											
7	1											
8												
9												
10												
											Mean	64.1

Date: 24th February 2016 Test Report Ref:. STR: 448013

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 51003 Unknown 18/1/2016 18/1/2016 Depth Top:260.06 Depth Base:260.18 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR :448013- Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 51003											
Key : -												
-												
D	Always dista	ince be	twee	en plate	en conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	bend	icular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	5.	-			ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)		ad streng	•
A	W*D minimu	ım x-se	ection	nal area	a				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-									rallel to fa	
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	120	12.8	7200	9167	1.40	1.34	1.87	44.9
2												
3												
4												
5												
6												
7 8												
9												
10												
10											Mean	44.9

Date: 24th February 2016 Test Report Ref:. STR: 448015

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 51005 Unknown 18/1/2016 18/1/2016 Depth Top:262.63 Depth Base:262.73 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton – Assistant Laboratory Manager

Point load test results STR : 448015 - Page 2 of 2

Client	Priority Cons	structio	n I ta	4								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 51005											
Key : -												
D	Always dista	l Ince he	two	n nlate	n conta	act point	2		D*D	$-4\Delta/n$	i for avial	(a) and irregular block (b) tests
W	Smallest wid								P		ilure in Kl	() 0 ()
	ie core diam					ig unect			-			
									ls			ngth index
	W =(W1 +					•			ls (50)		ad streng	
A	W*D minimu	ım x-se	ctio	nal area	à				F	Size co	rrection fa	actor
	For axial or i	irregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	l (d)	tests					//	Test pa	rallel to fa	abric
										· ·		
Sample	Sample	Test		D	W	Р	А	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	95	16.1	5700	7257	2.22	1.27	2.82	67.7
2												
3												
4												
5												
6												
7												
8												
9 10												
10												<u> </u>
											Mean	67.7

Date: 24th February 2016 Test Report Ref:. STR: 448016

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 51006 Unknown 18/1/2016 18/1/2016 Depth Top:264.80 Depth Base:164.93 Lackagh Quarry Unknown Client Rock Testing N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton - Assistant Laboratory Manager

Point load test results STR :448016 - Page 2 of 2

Client	Priority Cons	structio	n Lto	ł								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 51006	5										
Key : -												
D	Always dista	ince be	twee	en plate	en conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	bend	icular te	o loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	or axi	al tests	S.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				ls (50)	Point lo	ad streng	th index
А	W*D minimu			-					F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	-							//		rallel to fa	
	2 2 101 4									1.001.00		
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	ls (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	100	12.0	6000	7639	1.57	1.29	2.02	48.5
2												
3												
4												
5												
<u>6</u> 7												
8												
9												
10												
											Mean	48.5

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D539711 Date: 15th February 2016 Test Report Ref:. STR: 451474

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No.: Client Ref. No.: Date and Time of Sampling: Date of Receipt at Lab.: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 50740 Unknown 08/12/2015 15/12/2015 Depth Top: 37.92 Depth Base: 38.08 Lackagh Quarry SI Unknown Client Core N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton – Assistant Laboratory Manager

Point load test results STR : 451474 - Page 2 of 2

Client	Priority Cons	structio	n I to	4								
Sample Number	S6158											
Date Recived	8.12.15											
Sample Ref	BH05 50740											
Key : -												
D									D*D	4.0./		
	Always dista								D*D	= 4A/pi for axial (a) and irregular block (b) tests		
W	Smallest width perpendicular to loading direction				on		Р	Load failure in KN				
	ie core diameter for axial tests.						ls	Uncorrected strength index				
	W =(W1 + W2)/2 for irregular blocks.						ls (50)	Point load strength index				
А	W*D minimum x-sectional area						F	Size correction factor				
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test perpendicular to fabric		
D*D	For axial or irregular block test 0.3W < D < W = D*D for diametral (d) tests						//	Test parallel to fabric				
				10313					"	1031 00		
		_					-					
Sample	Sample	Test		D	W	P	A	D*D	ls	F	ls (50)	Approx. Compressive
	type	type *	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Axial, Block or Lu		^	^	^	~	^						
AXIAI, DIOCK OF LU												
1	Core	d		80	140	21.0	11200	14260	1.47	1.48	2.18	52.3
2	0010	ŭ		00	140	21.0	11200	14200	1.47	1.40	2.10	02.0
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	52.3

Porosity / Density Testing

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D53971I Date: 22nd March 2016 Test Report No: STR: 443026

Page 1 of 2

LABORATORY TEST REPORT

<u>REQUIREMENTS:</u> To determine the Porosity & Density using saturation and calliper in accordance with **ISRM Part 1: Test 2**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref.: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Supplier: Name and Location of Quarry Sampled By: Method of Sampling: No S56158 Various Unknown 08/12/2015 11/02/2016 Various Lackagh Quarry Unknown Client Rock Testing

Nick Dumbarton – Laboratory Manager

Test Report No: STR 443026 Page 2 of 2

RESULTS:

Sample ref:	Porosity (%)	Dry Density of Rock (Kg/m ³)
BH4 - 48929	0.4	2.69
BH4 - 48936	0.5	2.65
BH5 - 48974	0.4	2.68
BH5 – 50702	0.4	2.69
BH5 – 50730	0.6	2.69

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D539711 Date: 22nd March 2016 Test Report No: STR: 443115

Page 1 of 2

LABORATORY TEST REPORT

<u>REQUIREMENTS:</u> To determine the Porosity & Density using saturation and buoyancy in accordance with **ISRM Part 1: Test 3**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref.: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Supplier: Name and Location of Quarry Sampled By: Method of Sampling: No S56158 Various Unknown 08/12/2015 11/02/2016 Various Lackagh Quarry Unknown Client Rock Testing

Nick Dumbarton – Laboratory Manager

Test Report No: STR: 443115 Page 2 of 2

RESULTS:

Sample ref:	Porosity (%)	Dry Density of Rock (Kg/m ³)
BH4 - 48914	0.2	2.72
BH4 - 48968	0.4	2.69
BH5 - 48976	0.3	2.65
BH5 - 48999	0.3	2.69
BH5 - 50735	0.4	2.68

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D539711 Date:17th March 2016 Test Report No: STR: 447826

Page 1 of 2

LABORATORY TEST REPORT

<u>REQUIREMENTS:</u> To determine the Porosity & Density using saturation and buoyancy in accordance with **ISRM Part 1: Test 3**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref.: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Supplier: Name and Location of Quarry Sampled By: Method of Sampling: No S56595 Various Unknown 18/1/2016 21/2/2016 Various Lackagh Quarry Unknown Client Rock Testing

Nick Dumbarton – Laboratory Manager

Test Report No: STR: 447826 Page 1 of 2

RESULTS:

Sample ref:	Porosity (%)	Dry Density of Rock (Kg/m ³)
BH01 - 48865	0.5	2.63
BH01 - 48876	1.2	2.70
BH01 - 48889	0.5	2.68
BH01 - 50860	0.2	2.72
BH01 - 50867	0.2	2.63
BH01 - 50881	1.0	2.70
BH01 - 50898	0.7	2.59
BH01 - 50919	0.3	2.63
BH01 - 50928	0.7	2.67
BH01 - 50942	0.4	2.72
BH01 - 50960	0.5	2.71
BH01 - 50967	0.3	2.85
BH01 - 50978	0.3	2.63
BH01 - 50983	0.4	2.65
BH01 - 51009	0.5	2.64

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D539711 Date: 17th March 2016 Test Report No: STR: 447828

Page 1 of 2

LABORATORY TEST REPORT

<u>REQUIREMENTS:</u> To determine the Porosity & Density using saturation and calliper in accordance with **ISRM Part 1: Test 2**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref.: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Supplier: Name and Location of Quarry Sampled By: Method of Sampling: No S56595 Various Unknown 18/01/2016 21/02/2016 Various Lackagh Quarry Unknown Client Rock Testing

Nick Dumbarton – Laboratory Manager

Test Report No: STR: 447828 Page 1 of 2

RESULTS:

Sample ref:	Porosity (%)	Dry Density of Rock (Kg/m ³)
BH01 - 48866	0.47	2.69
BH01 - 48875	0.58	2.65
BH01 - 48885	0.54	2.70
BH01 - 50861	0.64	2.69
BH01 - 50866	0.57	2.71
BH01 - 50880	0.49	2.71
BH01 - 50897	0.57	2.69
BH01 - 50918	0.76	2.81
BH01 - 50927	0.61	2.75
BH01 - 50941	0.49	2.68
BH01 - 50956	0.54	2.69
BH01 - 50966	0.65	2.69
BH01 - 50977	0.56	2.75
BH01 - 50982	0.64	2.70
BH01 - 51008	0.63	2.65

Polish Stone Value

Priority Construction Ltd 162 Clontarf Road

Dublin 3 Ireland Date: 01 March 2016 Test Report Ref: STR 448027

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:	To determine the Polished Stone Value (PSV) of aggregate sample in
	accordance with BS EN 1097-8 : 2009

SAMPLE DETAILS:

VAT No: 9D539711

Contract: Lackagh Quarry

Certificate of samp Laboratory Ref. No: Client Ref. No: Date and Time of S Date of Receipt at Date of Start of Tes Sampling Locations Material Description	o: Sampling: Lab: st: :	No S56595 Bulk Sample Unknown 18/01/2016 23/02/2016 Unknown Aggregate		Name of Source: Method of Sampling: Sampled By:	Lackagh Quarry Unknown Client
RESULTS:					
Recorded Polished	Stone Value				
Test Specimen	Test Run 1 Test Run 2	(i) (ii) (iii) (iv)	35.3 35.7 35.0 37.0		Mean Recorded Value (S) = 35.8
Control Stone	Test Run 1 Test Run 2	(i) (ii) (iii)	47.7 47.3 47.0		Mean Recorded Value (C)

(iv)

46.7

38

Corrected Polished Stone Value: S + 49* - C =

Comments

*New Control Stone

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager Approved by: -

Elfoulden

= 47.2

Eric Goulden Technical Manager

Slake Durability

Priority Construction Ltd 162 Clontarf Road Date: 29 February 2016 Test Report Ref: STR 448028

Dublin 3 Ireland VAT No: 9D539711 Contract: Lackagh Quarry

LABORATORY TEST REPORT

To determine the Slake Durability Index of an aggregate sample in accordance with **ISRM guidelines**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. :	Bulk Sample
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	18/02/2016
Sampling Location:	Unknown
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Aggregate
Target Specification:	N/A

RESULTS:

Slake Durability Index =

99.4 %

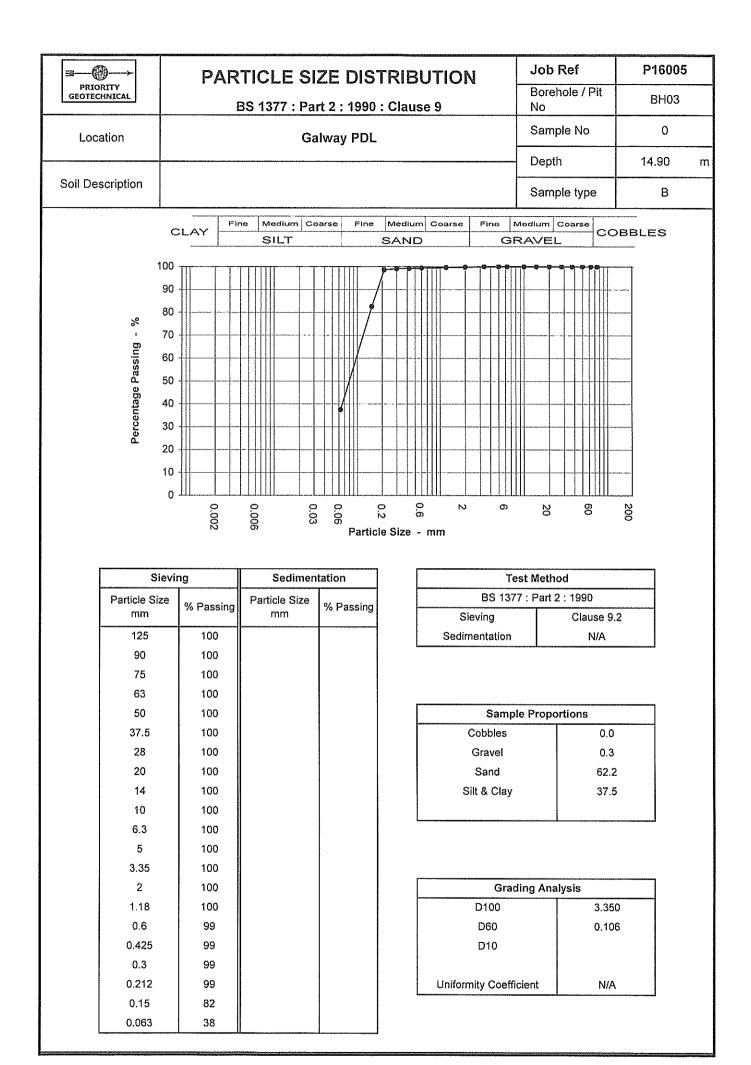
Comments None

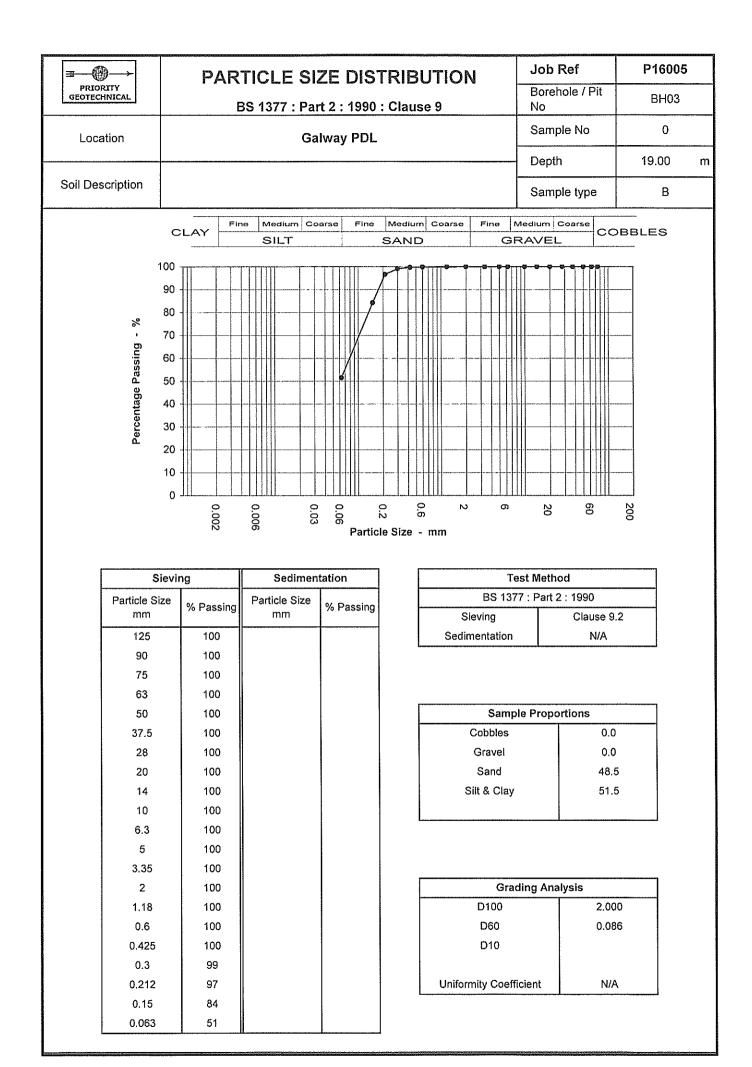
Certificate Prepared by:-

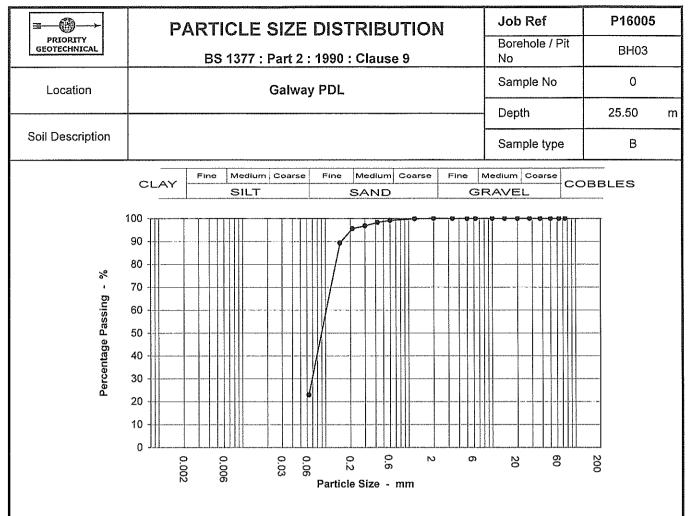
Mathew Sayer Assistant Laboratory Manager Approved by: - Elipsidem

Eric Goulden Technical Manager

Soil Testing

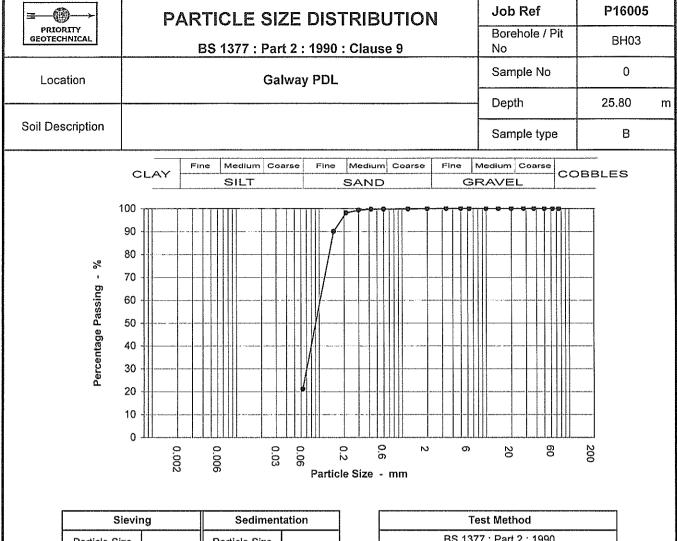



PRIORITY GEOTECHNICAL	Natural Moisture Content/Atterberg Limits Summary BS 1377 : Part 2 : 1990 : Clause 3	Job Ref
Location	Galway PDL	P16005


Hole ID	Sample Ref	Depth (m)	Sample Type	Sample Description	мс	LL.	PL	PI	% Pas: 425
BH03		13.65	В		26				
BH03		13.73	В			34	NP	NP	100
BH03		19.1	В			29	NP	NP	100
BH03		19.25	В		30				
BH03		19.9	В		30				
BH03		21.3	В		30				
BH03		27.45	В			28	NP	NP	100
BH03		31.2	В		25				
BH03		33.95	В		27				
BH03		38.6	В		36				
BH03		39.25	В			56	44	12	100
BH03		39.8	В		38				
BH03		40.65	В			27	20	7	100
BH03		42.3	В		31				
BH03		47.2	В		32				
BH03		48.2	В			54	43	11	100
BH03		49.3	В		37				
BH03		63.5	В		20				
BH03		64.3	В		29				
BH03		65.5	В		24				
BH03		66.95	В		38				
BH03		68.4	В		37				

PRIORITY GEOTECHNICAL		
Location	Galway PDL	P16005

Hole ID	Sample Ref	Depth (m)	Sample Type	Sample Description	мс	LL	PL	PI	% Pass 425
BH03		70.4	В		21				
BH03		70.75	В		21				
BH03		71.6	В		25				
BH06		16.6	В		22		-		
BH06		16.7	В			38	27	11	100
BH06		18.25	В		28				
BH06		18.65	В			49	38	11	100
BH06		21.45	В		26				
BH06		21.52	В			39	30	9	100

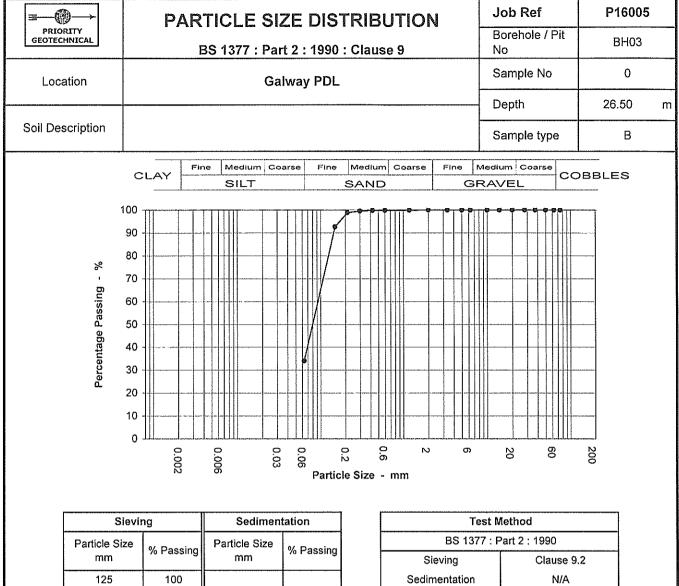


Sievir	Sieving		tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100	-	
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	98		
0.3	97		
0.212	95		
0.15	89		
0.063	23		

Test Method				
BS 1377 : Part 2 : 1990				
Sieving	Clause 9.2			
Sedimentation	N/A			

Sample Proportions				
Cobbles	0.0			
Gravel	0.0			
Sand	77.1			
Silt & Clay	22.9			

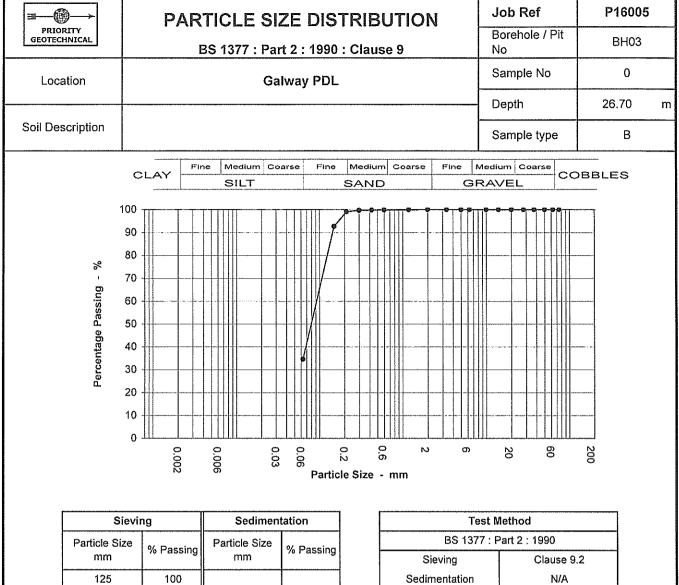
Grading Anal	ysis
D100	2.000
D60	0.112
D10	
Uniformity Coefficient	N/A



Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	99		
0.212	98		
0.15	90		
0.063	21		

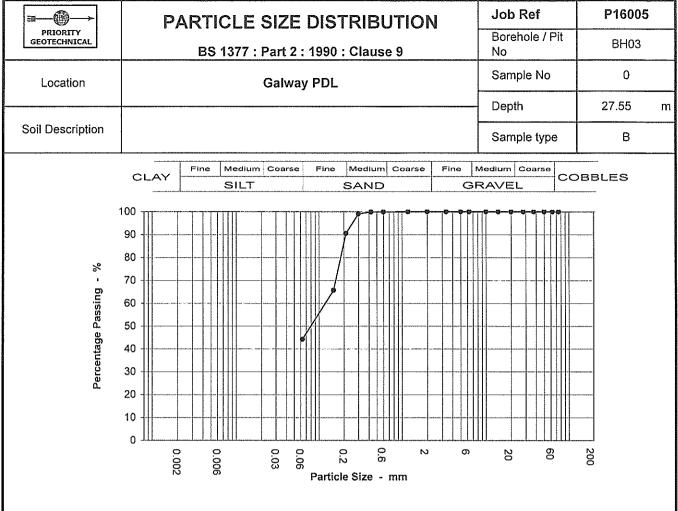
Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause 9.2		
Sedimentation	N/A	

Sample Proportions		
Cobbles 0.0		
Gravel	0.0	
Sand	78.8	
Silt & Clay	21.2	


Grading Analysis	
D100	3.350
D60	0.112
D10	
Uniformity Coefficient	N/A

mm	% Passing	mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	99		
0.212	99		
0.15	93		
0.063	34		

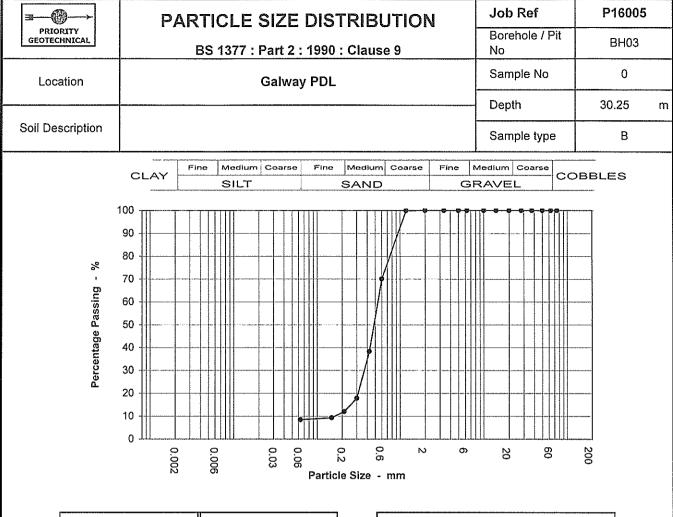
Sample Proportions		
Cobbles	0.0	
Gravel	0.0	
Sand	66.0	
Silt & Clay	34.0	


Grading Analysis	
D100	2.000
D60	0.102
D10	
Uniformity Coefficient	N/A

Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		ľ
50	100		
37.5	100		
28	100	3	
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		
0.212	99		
0.15	93		
0.063	35		

Sample Proportions		
Cobbles	0.0	
Gravel	0.0	
Sand	65.4	
Silt & Clay	34.6	

Grading Analysis	
D100	2.000
D60	0.101
D10	
Uniformity Coefficient	N/A

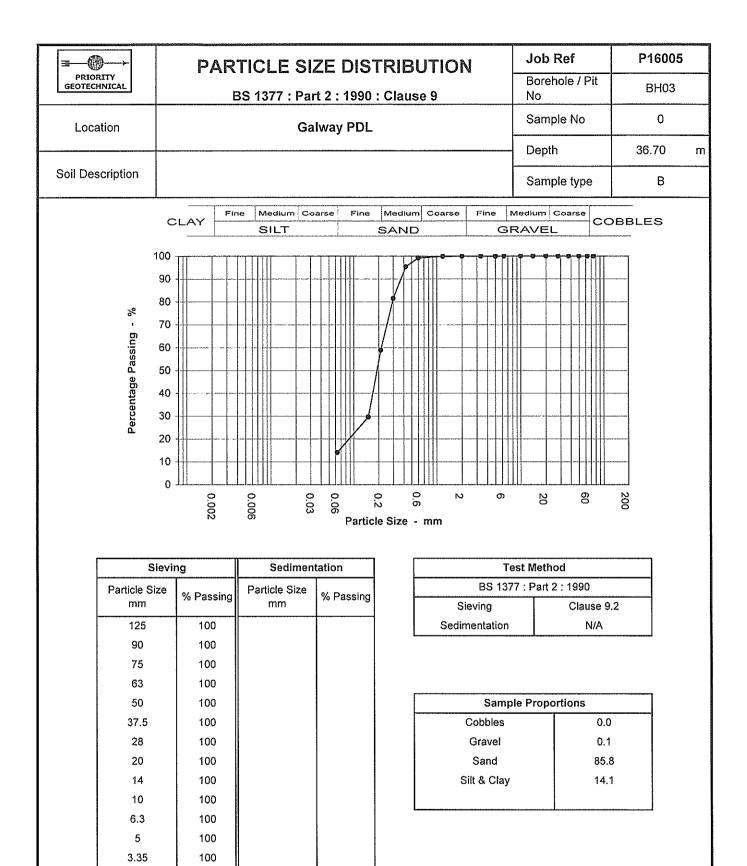


Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		· · · ·
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100	1	
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	99		
0.212	90		
0.15	66		
0.063	44		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause 9.2	
Sedimentation	N/A	

Sample Proportions							
Cobbles	0.0						
Gravel	0.0						
Sand	55.8						
Silt & Clay	44.2						

Grading Analysis							
D100	2.000						
D60	0.127						
D10							
Uniformity Coefficient N/A							



Sievir	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	70		
0.425	38		
0.3	18		
0.212	12		
0.15	9		
0.063	8		

Test Method						
BS 1377 : Part 2 : 1990						
Sieving	Clause 9.2					
Sedimentation N/A						

Sample Proportions						
Cobbles	0.0					
Gravel	0.0					
Sand	91.5					
Silt & Clay	8.4					

Grading Analysis							
D100	3.350						
D60	0.545						
D10	0.165						
Uniformity Coefficient 3							

2

1.18

0.6

0.425

0.3

0.212

0.15

0.063

100

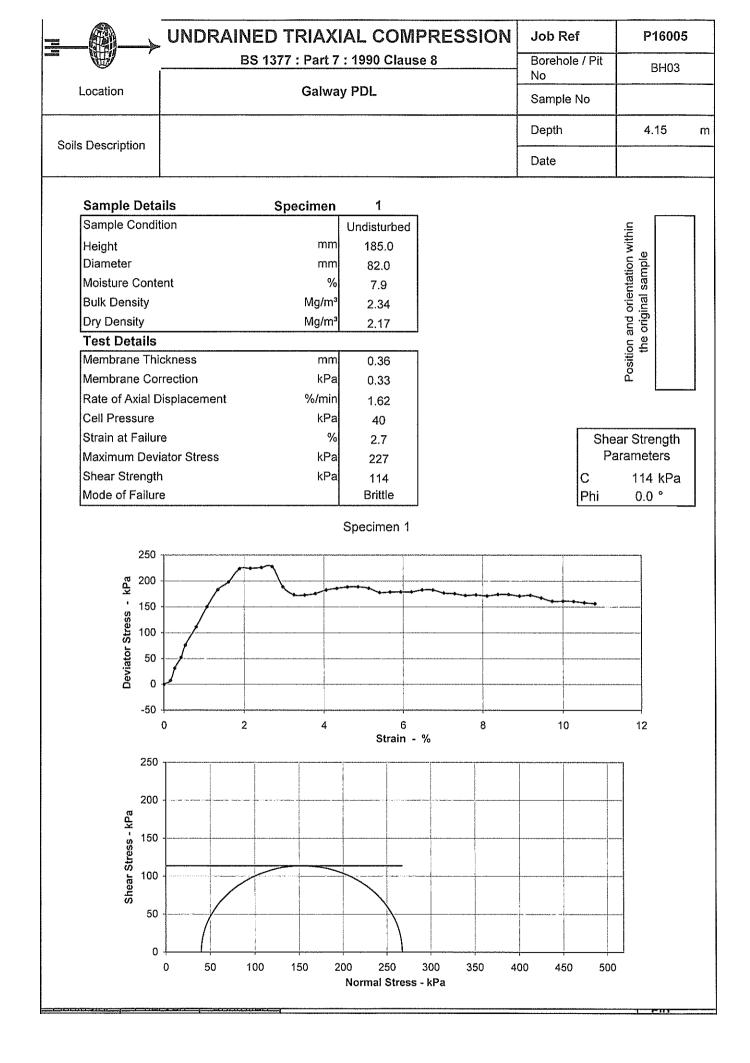
100

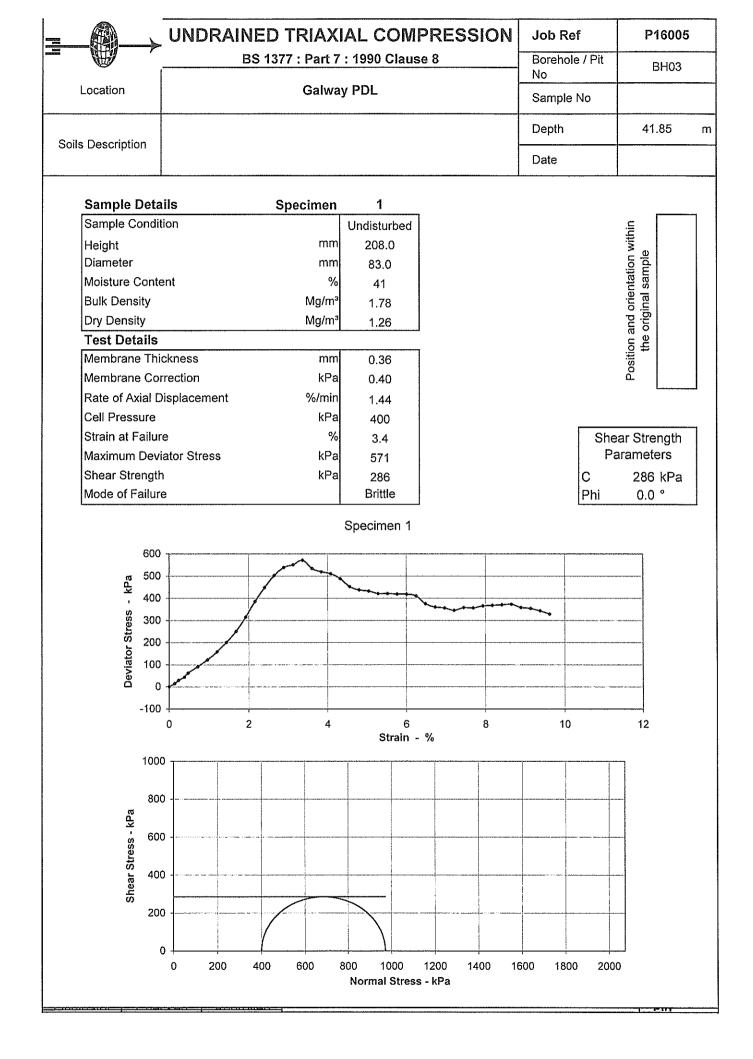
99

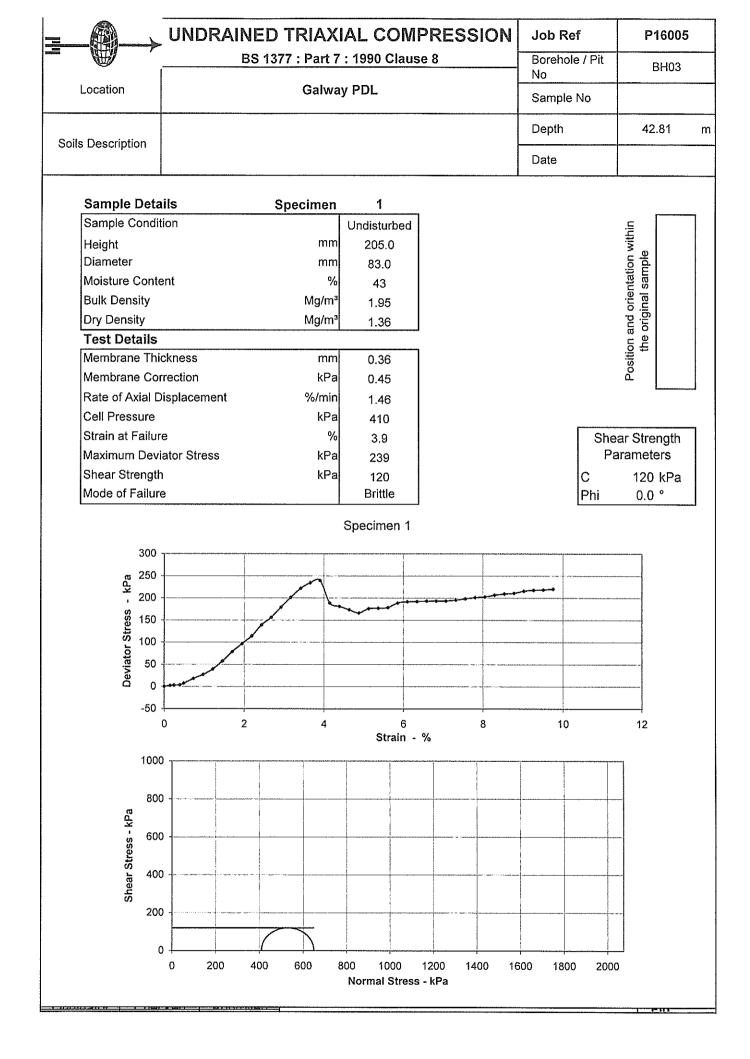
95

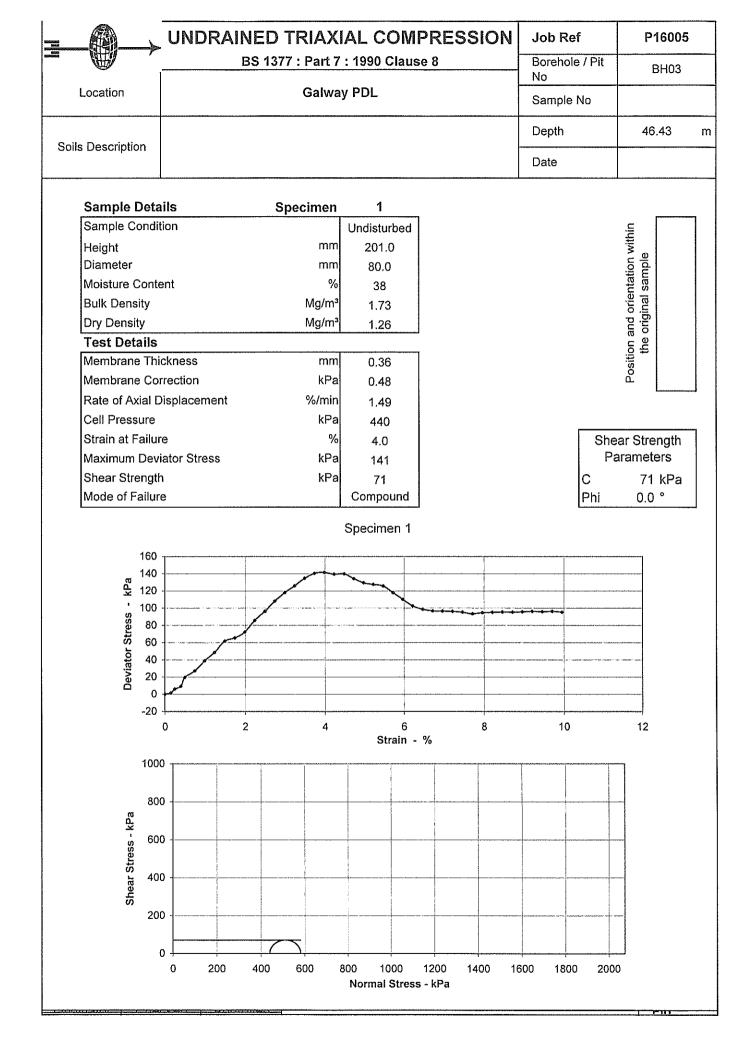
81

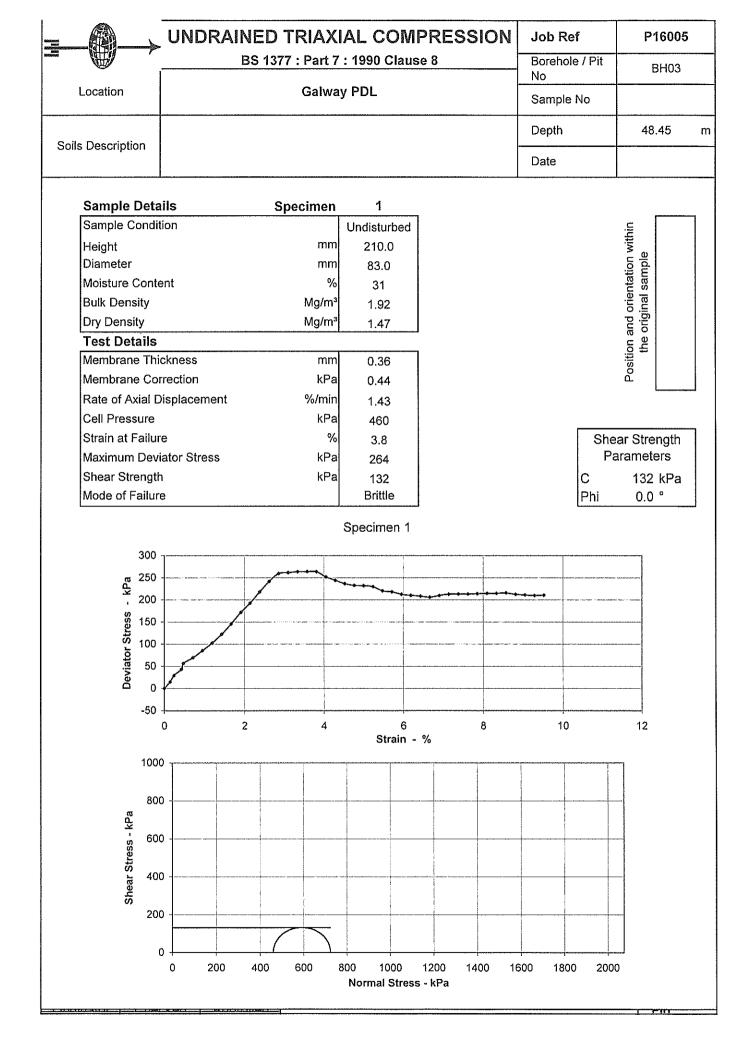
59

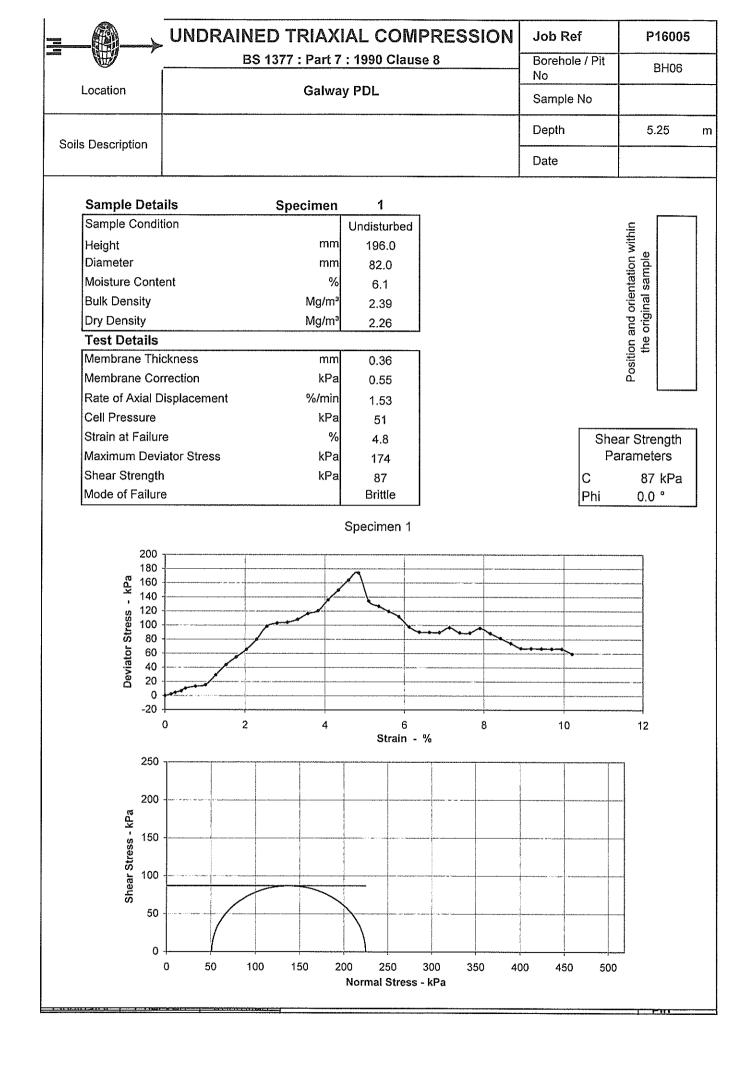

30

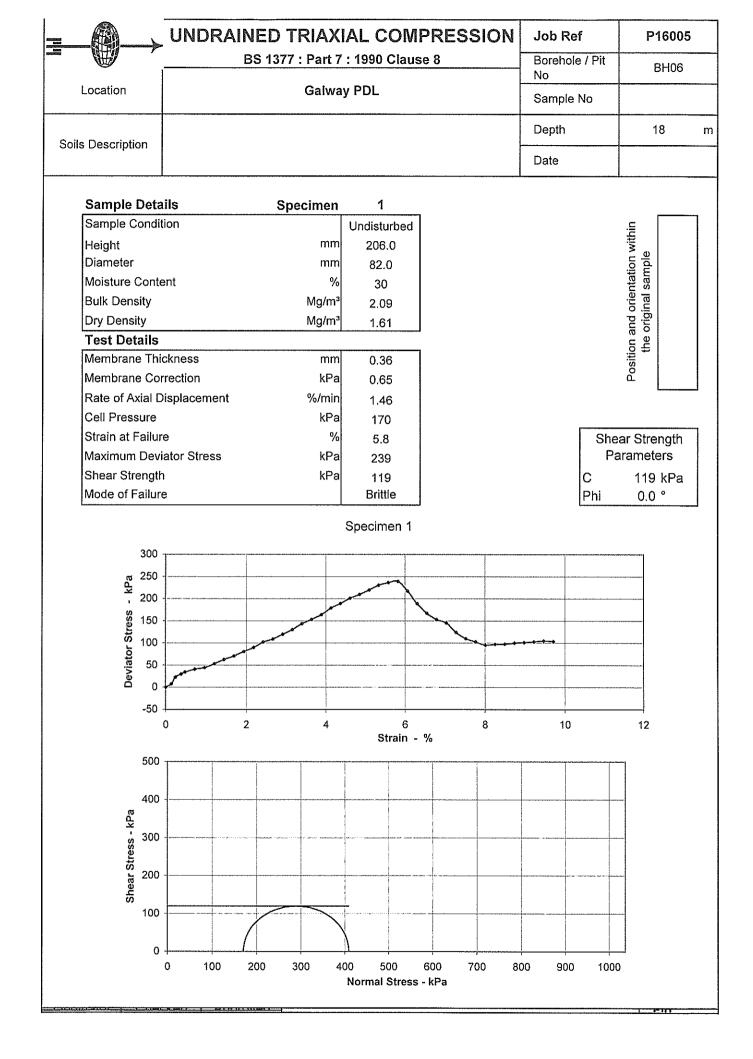

14


Grading Analysis							
D100	6.300						
D60	0.217						
D10							
Uniformity Coefficient	N/A						


Job Ref	P16005	Sulphate Content as SO4	Total Water Soluble Sulphate % g/L								·		
		Sulph	GW										
		as SO3	Water Soluble g/L			-							
	:	Sulphate Content as SO3	Total Suiphate % (
() in		Sulphat	GW g/L										
Value .5 & 9.6		*	pH Value	9.08	8.93	8.27	7.77	7.5					
& pH lause 5			2.0mm										
Sulphate Content & pH Value BS 1377 : Part 3 : 1990 : Clause 5.5 & 9.5	Galway PDL		Sample Description										
			Sample Type	£	m	۵	Ω	۵					
			Depth (m)	20.95	27.20	41.20	47.00	63.38					
	u		Sample Ref										
	Location		Hole ID	BH03	вноз	BH03	BH03	BH03		 			


PRIORITY EOTECHNICA			Job Ref			
 Location			P16005			
Hole ID	Sample Ref	Depth (m)	Sample Type	Sample Description	% Mass < 2 mm	Organic Matter Content %
BH03		38.95	В		100	8.85
BH03		39.45	В		100	5.63
BH03		42.35	В		100	7.04
BH03		46.20	В		100	15.12
BH03		47.45	В		99.97	6.64
BH03		49.00	В		100	6.49
BH03		63.15	В		98.97	10.22
BH03		63.90	В		100	5.99
BH03		64.90	В		99.3	7.68
BH06		17.13	В		99.51	3.15
BH06		18.95	В		99.5	3.17
BH06		21.75	В		99.93	12.51





Contract Number: 30522

Client's Reference: P16005

Laboratory Report

Report Date: 09-05-2016

Client Priority Geotechnical Limited Unit 12 Owenacurra Business Park Midleton Co. Cork.

Contract Title: N6 Galway Bypass For the attention of: Colette Kelly

Date Received: 07-04-2016 Date Commenced: 07-04-2016 Date Completed: 09-05-2016

Test Description

One-dimensional Consolidation 75mm or 50mm diameter specimens (5 days) 1377 : 1990 Part 5 : 3 - * UKAS

As 4.01 each additional day 1377 : 1990 Part 5 : 3

Disposal of Samples on Project

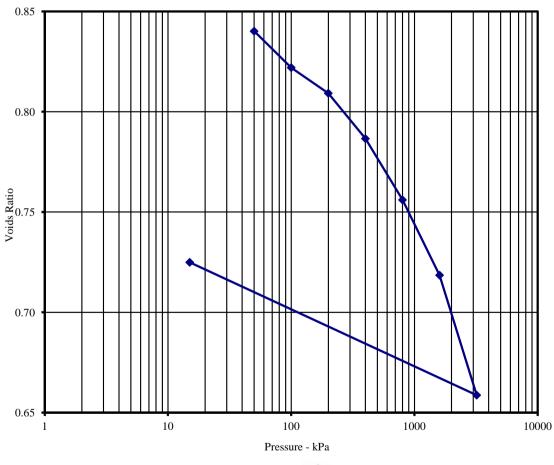
Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

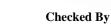
This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Approved Signatories:

Alex Wynn (Associate Director) - Benjamin Sharp (Contracts Manager) - Emma Sharp (Office Manager) Paul Evans (Quality/Technical Manager) - Vaughan Edwards (Managing Director) Qty


7

18

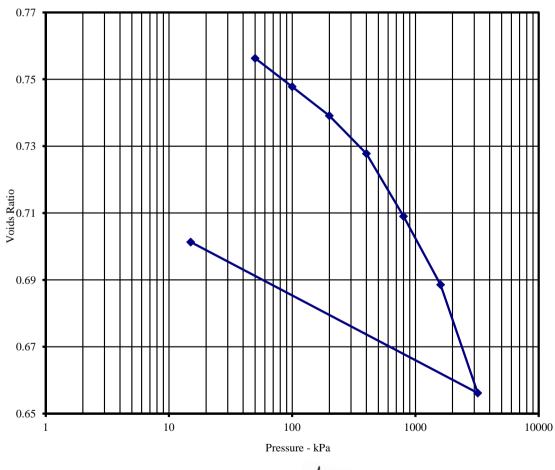

BS1377: Part 5: 1990

Client ref:	P16005				
Location:	N6 Galway Bypass				
Contract Number:	30522-070416				
Hole/Sample Number:	BH03				
Depth (m):	41.30 - 41.50				
Sample Type:	В				

Initial Conditions		Pressure Range			Mv	Cv	Method of time fitting used
Moisture Content (%):	33		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.89	0	-	50	0.20	23	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.43	50	-	100	0.20	15	20'C
Voids Ratio:	0.8590	100	-	200	0.070	24	Location of specimen with sample
Degree of saturation:	101.4	200	-	400	0.063	13	top
Height (mm):	19.96	400	-	800	0.043	7.4	Remarks:
Diameter (mm)	50.06	800	-	1600	0.027	9.8	
Particle Density (Mg/m3):	2.65	1600	-	3200	0.022	11	
Assumed		3200	-	15	0.013	20	

Watam

Approved By


DP Gronz

09/05/16 Date

BS1377: Part 5: 1990

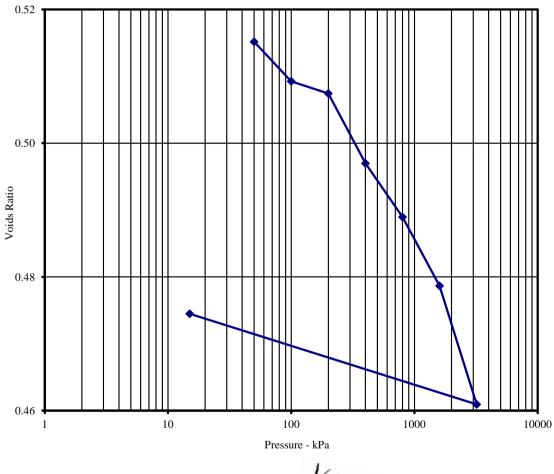
Client ref:	P16005				
Location:	N6 Galway Bypass				
Contract Number:	30522-070416				
Hole/Sample Number:	BH03				
Depth (m):	42.97 - 43.00				
Sample Type:	В				

Initial Conditions		Pressure Range			Mv	Cv	Method of time fitting used
Moisture Content (%):	29		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.93	0	-	50	0.18	31	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.50	50	-	100	0.10	11	20'C
Voids Ratio:	0.7721	100	-	200	0.050	36	Location of specimen with sample
Degree of saturation:	99.6	200	-	400	0.033	11	top
Height (mm):	20.02	400	-	800	0.027	12	Remarks:
Diameter (mm)	50.05	800	-	1600	0.015	25	
Particle Density (Mg/m3):	2.65	1600	-	3200	0.012	10	
Assumed		3200	-	15	0.0086	31	

Watam Checked By

Date

Approved By


DP Grang

09/05/16 Date

BS1377: Part 5: 1990

Client ref:	P16005
Location:	N6 Galway Bypass
Contract Number:	30522-070416
Hole/Sample Number:	BH03
Depth (m):	44.05 - 44.20
Sample Type:	В

Initial Conditions		Pressure Range			Mv	Cv	Method of time fitting used
Moisture Content (%):	21		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	2.11	0	-	50	0.025	19	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.75	50	-	100	0.078	0.53	20'C
Voids Ratio:	0.5171	100	-	200	0.012	19	Location of specimen with sample
Degree of saturation:	105.2	200	-	400	0.035	4.8	top
Height (mm):	20.03	400	-	800	0.013	6.2	Remarks:
Diameter (mm)	50	800	-	1600	0.0086	19	
Particle Density (Mg/m3):	2.65	1600	-	3200	0.0075	10	
Assumed		3200	-	15	0.0029	53	

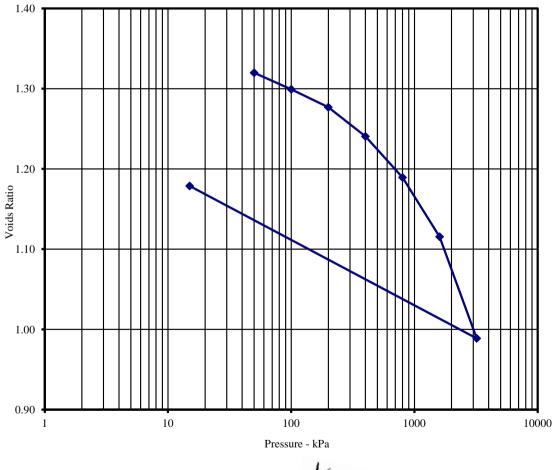
GSTL GEO SITE & TESTING SERVICES LTD

Watam

Checked By

09/05/16

Date


DPGans Approved By

y

BS1377: Part 5: 1990

Client ref:	P16005
Location:	N6 Galway Bypass
Contract Number:	30522-070416
Hole/Sample Number:	BH03
Depth (m):	47.85 - 48.02
Sample Type:	В

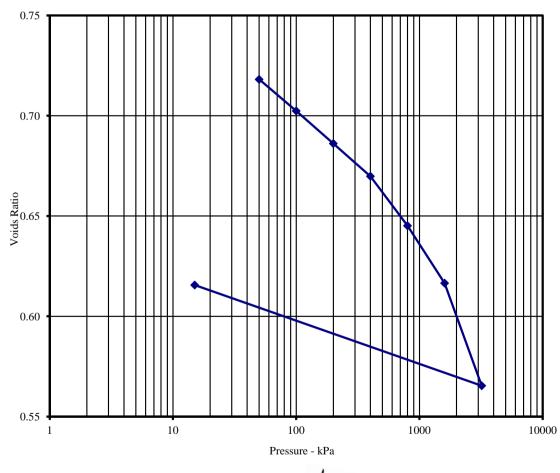
Initial Conditions		Pressure Range			Mv	Cv	Method of time fitting used
Moisture Content (%):	40		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.59	0	-	50	0.13	18	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.14	50	-	100	0.18	5.6	20'C
Voids Ratio:	1.3346	100	-	200	0.097	18	Location of specimen with sample
Degree of saturation:	79.1	200	-	400	0.080	4.1	top
Height (mm):	20.04	400	-	800	0.057	0.63	Remarks:
Diameter (mm)	50.02	800	-	1600	0.042	15	
Particle Density (Mg/m3):	2.65	1600	-	3200	0.037	9.2	
Assumed		3200	-	15	0.030	2.8	

GSTL GEO SITE & TESTING SERVICES LTD

Watam

Checked By

Approved By


DP Grang

09/05/16 Date

BS1377: Part 5: 1990

Client ref:	P16005
Location:	N6 Galway Bypass
Contract Number:	30522-070416
Hole/Sample Number:	BH06
Depth (m):	16.20 - 16.50
Sample Type:	В

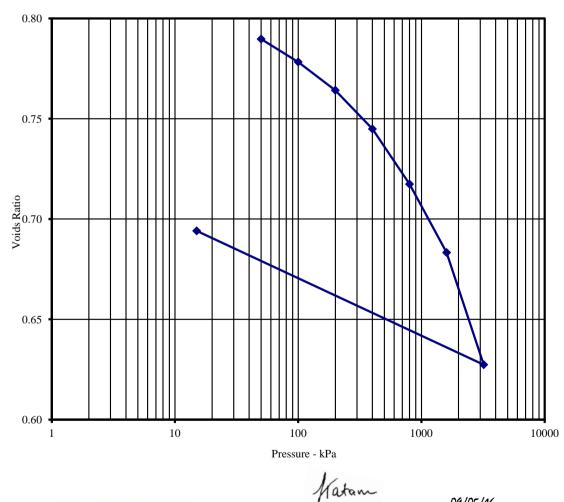
Initial Conditions		Pressure Range			Mv	Cv	Method of time fitting used
Moisture Content (%):	26		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.95	0	-	50	0.046	17	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.54	50	-	100	0.18	12	20'C
Voids Ratio:	0.7221	100	-	200	0.10	10	Location of specimen with sample
Degree of saturation:	96.9	200	-	400	0.048	16	top
Height (mm):	20.04	400	-	800	0.037	6.2	Remarks:
Diameter (mm)	50.02	800	-	1600	0.022	11	
Particle Density (Mg/m3):	2.65	1600	-	3200	0.020	14	
Assumed		3200	-	15	0.010	10	

Watam Checked By

09/05/16

Date

Date


Approved By

DP Grang

BS1377: Part 5: 1990

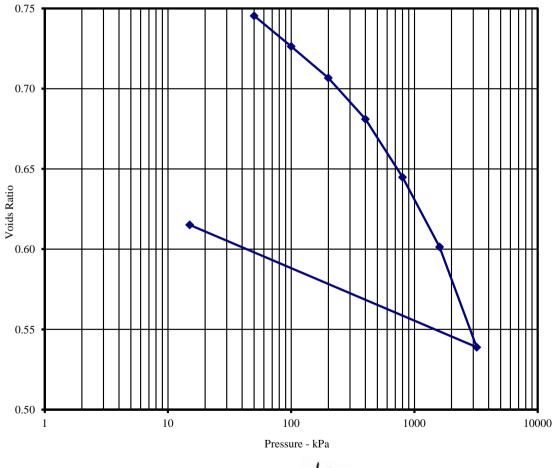
Client ref:	P16005
Location:	N6 Galway Bypass
Contract Number:	30522-070416
Hole/Sample Number:	BH06
Depth (m):	19.70 - 19.95
Sample Type:	В

Initial Conditions		Pressure Range			Mv	Cv	Method of time fitting used
Moisture Content (%):	27		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.87	0	-	50	0.084	12	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.47	50	-	100	0.13	12	20'C
Voids Ratio:	0.7973	100	-	200	0.079	27	Location of specimen with sample
Degree of saturation:	90.1	200	-	400	0.055	11	top
Height (mm):	20.13	400	-	800	0.039	4.3	Remarks:
Diameter (mm)	50.01	800	-	1600	0.025	16	
Particle Density (Mg/m3):	2.65	1600	-	3200	0.021	15	
Assumed		3200	-	15	0.013	16	

09/05/16 Date

09/05/16

Date


Approved By

DP Grang

BS1377: Part 5: 1990

Client ref:	P16005
Location:	N6 Galway Bypass
Contract Number:	30522-070416
Hole/Sample Number:	BH06
Depth (m):	20.00 - 20.25
Sample Type:	В

Initial Conditions		Pressure Range			Mv	Cv	Method of time fitting used
Moisture Content (%):	30		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.94	0	-	50	0.35	18	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.49	50	-	100	0.22	15	20'C
Voids Ratio:	0.7762	100	-	200	0.11	27	Location of specimen with sample
Degree of saturation:	101.7	200	-	400	0.075	16	top
Height (mm):	19.92	400	-	800	0.054	7.0	Remarks:
Diameter (mm)	50.02	800	-	1600	0.033	21	
Particle Density (Mg/m3):	2.65	1600	-	3200	0.024	14	
Assumed		3200	-	15	0.016	7.1	

Watam

Checked By

Approved By

DP Grang

09/05/16 Date

Thin Section / Petrography

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D539711 Date: 16th February 2016 Test Report Ref.: 443031

Page 1 of 8

LABORATORY TEST REPORT

<u>Test Requirements:</u> Petrographic Examination of Natural Stone in accordance with BS EN 12047:2007

Sample details:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH04 - 48919 Unknown 29/1/2016 21/1/2016 Depth Top: 20.05 Depth Base: 20.12 Lackagh Quarry SI Unknown Client Core N/A

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The work was carried out by our accredited, competent, sub contracted laboratory.

RESULTS

See Attached

Nick Dumbarton – Assistant Laboratory Manager

Test Report Ref.: 443031 - Page 2 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007

HAND SPECIMEN DESCRIPTION

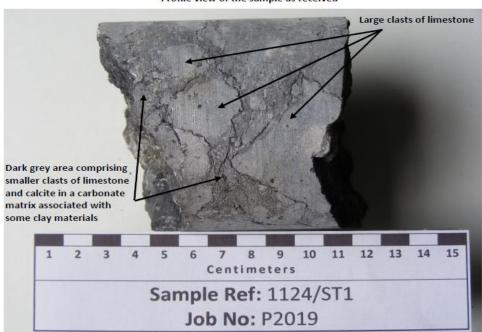
The sample was hard, fine to very coarse grained, anisotropic limestone breccia. The sample exhibited small to very large, medium grey limestone clasts (up to >70mm across), cemented or surrounded by dark grey materials comprising chiefly much smaller limestone and calcite grains, and including some clay materials. The sample did not appear macroporous.

MICROSCOPICAL DESCRIPTION

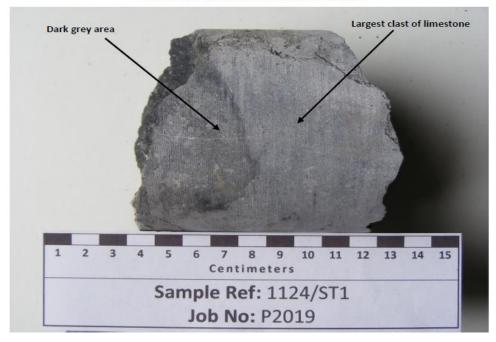
Constituents ¹	Visual Estimated Proportions ² %	Range of Crystal/Grain Size	Petrographic Details	Origin
Calcite	94	Up to 4mm	Fresh, angular to well rounded calcium carbonate, including abundant bioclasts. The sample was partially stained in accordance with Dickson's method. This suggested that the calcite was non- ferroan.	Primary
Clay materials	2-3	<4µm	Very fine grained materials beyond the conclusive resolution of the petrographic microscope, which could be better investigated by scanning electron microscopy (SEM).	Primary
Opaque minerals	1-2	Up to 800μm	Irregular, anhedral to euhedral, fresh to partially oxidised isotropic minerals apparently comprising both framboidal and facetted, probably pyritic materials. Scanning electron microscopy should be used if necessary for better resolution and description of the opaque minerals.	Primary
Iron oxide compounds	<<1	N/A	Small amorphous by-products of the partial or complete oxidation of opaque minerals.	Secondary

The sample was a fine to very coarse grained LIMESTONE BRECCIA, comprising chiefly calcium carbonate (chiefly as limestone clasts), with a minor proportion of clay materials and trace to minor proportion of opaque minerals.

The individual limestone constituents were typically fine to medium grained. The dark grey areas of the sample comprised chiefly smaller calcium carbonate, with a minor proportion of clay materials. The opaque minerals were unevenly distributed and were frequently observed concentrated in thin, irregular and randomly orientated layers within the dark grey areas of the sample.


The sample fractured relatively easily along irregular and randomly distributed fracture surfaces within the dark grey areas of the sample during the cutting process to produce the thin section slice. This suggested that the dark grey areas of the sample exhibited frequent planes of weakness, which were probably associated with clay materials and the irregular layers of opaque minerals.

Only rare voids up to 0.4mm were observed. These voids appeared chiefly associated with loss of materials during the sampling process and did not appear interconnected. The void content was visually estimated as being well below 1%. The sample was fresh and exhibited Grade I weathering.


Test Report Ref.: 443031 – Page 3 of 8

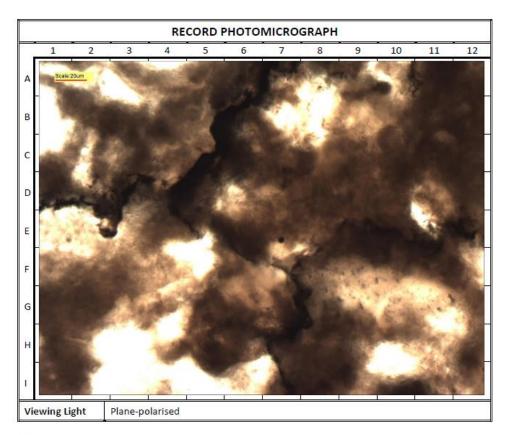
Petrographic Examination Natural Stone- BS EN 12407:2007

Profile view of the sample as received


Another profile view of the sample as received

Test Report Ref.: 443031 – Page 4 of 8

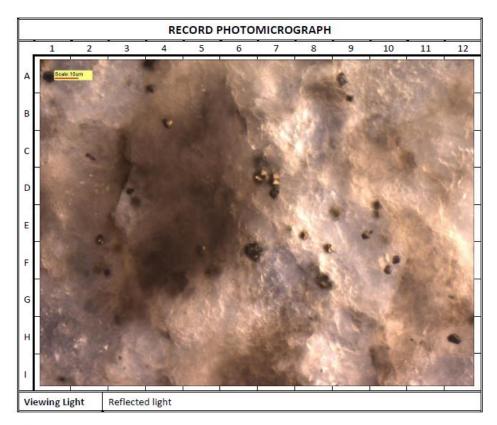
Petrographic Examination Natural Stone- BS EN 12407:2007


Description

View of a section through the limestone, showing limestone and calcite clasts (grey/pale brown/white, pale pink/greyish brown: B2, B6, B9, B12, F2 and H6) and section of the dark grey areas (greyish black: A8, D3 and I2) comprising smaller limestone and calcite clasts/grains and some clay materials.

Test Report Ref.: 443031 – Page 5 of 8

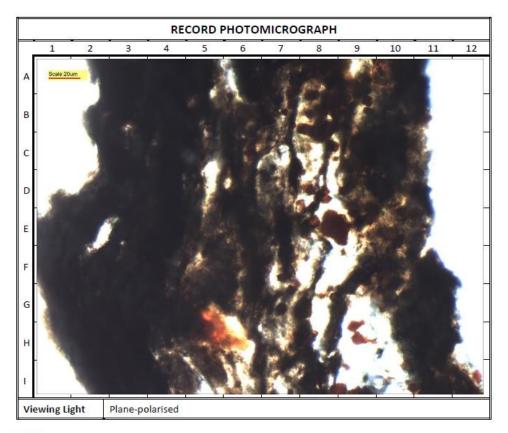
Petrographic Examination Natural Stone- BS EN 12407:2007


Description

Closer view of a section through a dark grey area of the sample, showing clay materials (brown: A6, A11 and G1) and randomly distributed layers of opaque minerals (black: A7 to D1, D4 to F7 and E12 to I7).

Test Report Ref.: 443031 – Page 6 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007


Description

Closer view of a section through the sample, showing faceted opaque minerals (brass coloured: A9, B4, D7 and F8) and apparent framboidal opaque minerals (black/brass: A1, D7 and F6).

Test Report Ref.: 443031 - Page 7 of 8

Petrographic Examination Natural Stone– BS EN 12407:2007

Description

View of a section through the sample, showing opaque minerals (black: A3, A6 and C9) an oxidised opaque minerals (dusky red, reddish orange: A10, E8, H5/6 and H9irregular voids (yellow: B6, D6 and H9).

Test Report Ref.: 443031 - Page 8 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007

Glossary of Terms Used in the Descriptions

1	
Proportions	Major: constituent present at a level ≥10%; Minor: constituent present at level ≥2% but <10; Trace: constituent present at <2% level
Frequency	 Rare – only found by thorough searching Sporadic – only occasionally observed during normal examination Common – easily observed during normal examination Frequent – easily observed with minimal examination Abundant – immediately apparent to initial examination
Hardness	 Very soft: can be penetrated easily by a finger Soft: scores with a fingernail Moderately soft: scores using a copper coin Moderately hard: scores easily with a penknife Hard: not easily scored with a penknife Very hard: cannot be scored with a steel point or knife.
Weathering/ alteration	 Grade I (Fresh): Unchanged from original state Grade II (Slightly Weathered): Slight discoloration, slight weakening; Grade III (Moderately Weathered): Considerably weakened, penetrative discoloration, large pieces cannot be broken by hand Grade IV (Highly Weathered): large pieces can be broken by hand, does not readily disaggregate (slake) when dry sample immersed in water Grade V (Completely Weathered): considerably weakened, slakes, original texture apparent; Grade VI (Residual Soil) Soil derived by in-situ weathering but retaining none of the original texture or fabric.
Origin	 Primary constituents: Constituents present within the rock at its formation. Secondary constituents: Constituents formed by the alteration of pre-existing primary constituents or introduced from an external source after the rock was formed
Size	Mega: >60mm; Macro: 2-60mm; Meso: 60µm-2mm; Micro: 2-60µm; Crypto: <2µm; Glassy: without visible crystallinity
Bedding/Layering	Thick: >600mm; Medium: 200-600mm; Thin: 60-200mm; Very thin: 20-60mm
Lamination	Thick: 6-20mm; Thin: 2-6mm; Very thin: 600µm-2mm; Extremely thin: <600µm
Cleavage	Extremely wide: >2mm; Very wide: 600μm-2mm; Wide: 200-600μm; Medium: 60-200μm; Close: 20-60μm; Very close: 6- 20μm; Extremely close: <6μm.
Cracks	 Fine microcracks (<1µm wide) Microcracks (1-10µm wide) Fine cracks (10-100µm wide) Cracks (100µm-1mm wide) Large cracks (>1mm wide).
Limestone Classification Schemes	Folk, R. L. 1959. Practical petrographic classification of limestones. Bull. Am. Ass. Petro. Geol. 43, 1-38. Dunham, R. J. 1962. Classification of carbonate rocks according to depositional texture. In: Classification of Carbonate Rocks (Ed. By W. E. Ham), pp. 108-121. Mem. Am. Ass. Petrol. Geol. 1, Tulsa.

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland VAT No: 9D539711 Date: 16th February 2016 Test Report Ref.: 443144

Page 1 of 8

LABORATORY TEST REPORT

<u>Test Requirements:</u> Petrographic Examination of Natural Stone in accordance with BS EN 12047:2007

Sample details:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56158 BH05 - 50728 Unknown 29/1/2016 21/1/2016 Depth Top: 32.92 Depth Base: 33 Lackagh Quarry SI Unknown Client Core N/A

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The work was carried out by our accredited, competent, sub contracted laboratory.

RESULTS

See Attached

Nick Dumbarton – Assistant Laboratory Manager

Test Report Ref.: 443144 - Page 2 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007

HAND SPECIMEN DESCRIPTION

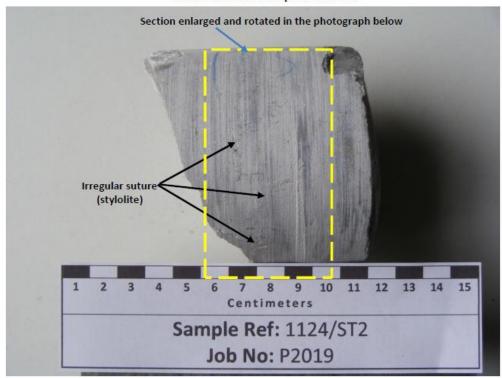
The sample was hard, fine grained, massive, not macroporous limestone. The sample was almost isotropic, except for the presence of a small stylolite (irregular suture) typically <200µm across, running more or less perpendicular to the coring direction. Sporadic small irregular voids up to approximately 1mm across were observed chiefly associated with apparent loss of materials along the stylolite.

Constituents ¹	Visual Estimated Proportions ² %	Range of Crystal/Grain Size	Petrographic Details	Origin
Calcite	99	Up to 800μm	Fresh, angular to well rounded calcium carbonate, including frequent bioclasts. The sample was partially stained in accordance with Dickson's method. This suggested that the calcite was non- ferroan.	Primary
Opaque minerals	<1	Up to 80μm	Fresh to partially altered, chiefly euhedral isotropic minerals apparently comprising facetted, probably pyritic materials. SEM should be used if necessary for better resolution and description of the opaque minerals.	Primary
Iron oxide compounds	<<1	N/A	Rare amorphous by-products of the partial or complete oxidation of opaque minerals.	Secondary

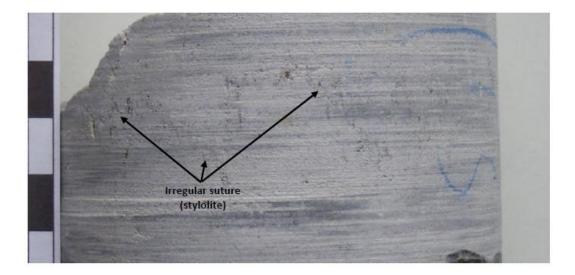
MICROSCOPICAL DESCRIPTION

The sample was a fine grained LIMESTONE, comprising almost entirely calcium carbonate, with trace amounts of opaque minerals and associated iron oxide compounds.

The sample exhibited stylolite comprising coarser crystals of calcite.

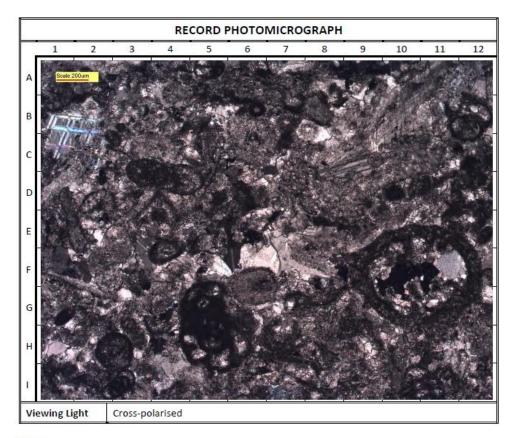

The sporadic voids observed associated with the stylolite did not appeared interconnected. The void content was visually estimated as being well below 1%.

The sample was fresh and exhibited Grade I weathering.


Test Report Ref.: 443144 - Page 3 of 8

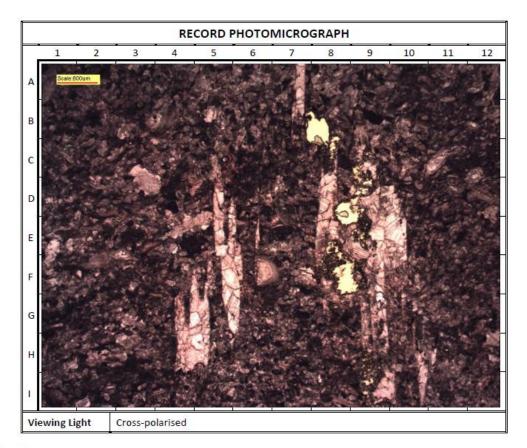
Petrographic Examination Natural Stone- BS EN 12407:2007

Profile view of the sample as received


Closer view of the stylolite with 90 degrees rotation of the photograph

Test Report Ref.: 443144 - Page 4 of 8

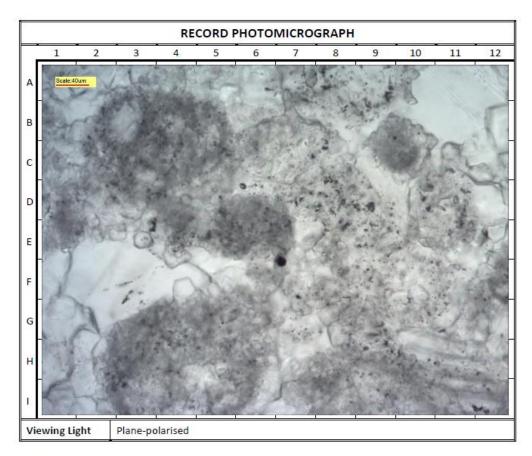
Petrographic Examination Natural Stone- BS EN 12407:2007


Description

View of a section through the limestone particles showing almost entire calcium carbonate (brown, dusky brown, greyish brown, grey/blue/green, pale pink: A9, B/C1, C9, F7 and G5), including bioclasts (dusky brown/greyish black: A5, C/D4, F10 and G5).

Test Report Ref.: 443144 - Page 5 of 8

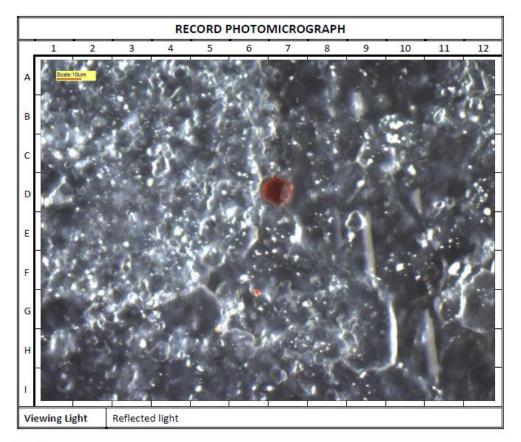
Petrographic Examination Natural Stone- BS EN 12407:2007


Description

Closer view of a section through the limestone, showing sections of the stylolite (pale pink: A7, E5, E9, H4 and I9) and voids (yellow: B7/8, D8, F8 and I9) associated with the stylolite.

Test Report Ref.: 443144 - Page 6 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007


Description

View of a section through the limestone, showing opaque minerals (black: E/F7).

Test Report Ref.: 443144 – Page 7 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007

Description

View of a section through the limestone, showing partially oxidised opaque mineral (red: D7) and iron oxide compounds (reddish orange: G6 and G/H5).

Test Report Ref.: 443144 - Page 8 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007

Glossary of Terms Used in the Descriptions

Proportions	Major: constituent present at a level ≥10%; Minor: constituent present at level ≥2% but <10; Trace: constituent present at <2%
	level
Frequency	Rare – only found by thorough searching
	 Sporadic – only occasionally observed during normal examination
	Common – easily observed during normal examination
	Frequent – easily observed with minimal examination
	Abundant – immediately apparent to initial examination
Hardness	Very soft: can be penetrated easily by a finger
naruness	Soft: scores with a fingernail
	Moderately soft: scores using a copper coin
	Moderately sort: scores asing a copper com Moderately hard: scores easily with a penknife
	Hard: not easily scored with a penknife
	Very hard: cannot be scored with a steel point or knife.
	- Very nere, cannot be seered with a steer point of nime.
Weathering/	Grade I (Fresh): Unchanged from original state
alteration	Grade II (Slightly Weathered): Slight discoloration, slight weakening;
	Grade III (Moderately Weathered): Considerably weakened, penetrative discoloration, large pieces cannot be broken by
	hand
	Grade IV (Highly Weathered): large pieces can be broken by hand, does not readily disaggregate (slake) when dry sample
	immersed in water
	Grade V (Completely Weathered): considerably weakened, slakes, original texture apparent; Grade VI (Residual Soil)
	 Soil derived by in-situ weathering but retaining none of the original texture or fabric.
Oninin	
Origin	 Primary constituents: Constituents present within the rock at its formation. Secondary constituents: Constituents formed by the alteration of pre-existing primary constituents or introduced from
	 Secondary constituents: Constituents formed by the alteration of pre-existing primary constituents or introduced from an external source after the rock was formed
	an external source after the fock was formed
Size	Mega: >60mm; Macro: 2-60mm; Meso: 60µm-2mm; Micro: 2-60µm; Crypto: <2µm; Glassy: without visible crystallinity
SILC	mega commi, matto. 2 commi, meso. copan 2mmi, meto. 2 copan, crypto span, crassy. metoar visible crystammer
Bedding/Layering	Thick: >600mm; Medium: 200-600mm; Thin: 60-200mm; Very thin: 20-60mm
	······································
Lamination	Thick: 6-20mm; Thin: 2-6mm; Very thin: 600µm-2mm; Extremely thin: <600µm
Cleavage	Extremely wide: >2mm; Very wide: 600µm-2mm; Wide: 200-600µm; Medium: 60-200µm; Close: 20-60µm; Very close: 6-
	20μm; Extremely close: <6μm.
Cracks	 Fine microcracks (<1µm wide)
	 Microcracks (1-10µm wide)
	 Fine cracks (10-100μm wide)
	Cracks (100μm-1mm wide)
	Large cracks (>1mm wide).
Limestone	Folk, R. L. 1959. Practical petrographic classification of limestones. Bull. Am. Ass. Petro. Geol. 43, 1-38.
Schemes	Dunham, R. J. 1962. Classification of carbonate rocks according to depositional texture. In: Classification of Carbonate Rocks
scientes	(Ed. By W. E. Ham), pp. 108-121. Mem. Am. Ass. Petrol. Geol. 1, Tulsa.

Priority Drilling Ltd. Killimor Ballinasloe Co Galway Ireland 8D23036i Date: 6th April 2016 Test Report Ref.: 447907

Page 1 of 8

LABORATORY TEST REPORT

<u>Test Requirements:</u> Petrographic Examination of Natural Stone in accordance with BS EN 12047:2007

Sample details:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50899 Unknown 18/01/2016 18/03/2016 Depth Top:113.00 Depth Base:113.08 Lackagh Quarry Unknown Client Rock Testing N/A

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The work was carried out by our accredited, competent, sub contracted laboratory.

RESULTS

See Attached

Nick Dumbarton – Assistant Laboratory Manager

Test Report Ref.: 447907 – Page 2 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007

HAND SPECIMEN DESCRIPTION

The sample was a moderately hard, fine to medium grained, massive, not macroporous limestone. The sample was chiefly medium dark grey, but exhibited common, randomly distributed, very light grey to medium grey grains that constituted the medium sized grains of the rock. The sample was almost isotropic, except for the presence of sporadic, randomly orientated small dark grey apparent stylolite (irregular suture) typically <500 µm across and rare vein <400 µm. Sporadic unevenly distributed patches of iron oxide compounds were observed.

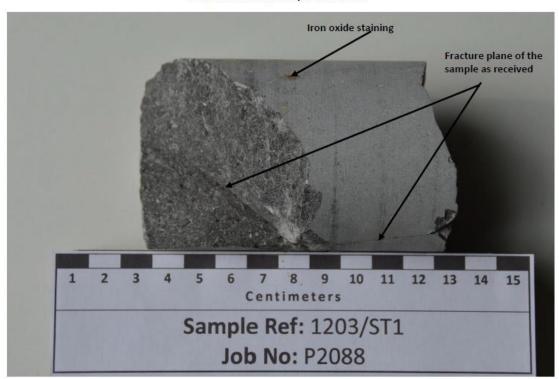
MICROSCOPICAL DESCRIPTION				
Constituents ¹	Visual Estimated Proportions ² %	Range of Crystal/Grain Size	Petrographic Details	Origin
Calcite	99	Up to 2500μm	Fresh, anhedral to euhedral crystals comprising chiefly microcrystalline calcite (calcite crystals <4 μ m), with a lesser proportion of sparry calcite (calcite crystals >4 μ m) and large discrete calcium carbonate grains. The sparry calcite and larger discrete calcium carbonate grains were chiefly observed within randomly distributed, abundant bioclasts and rare calcite veins. The sample was partially stained in accordance with Dickson's method. This suggested that the calcite was predominantly non-ferroan, with a trace amount of possibly ferroan calcite.	Primary
Opaque minerals	<1	Up to 50μm	Fresh, chiefly anhedral isotropic minerals apparently comprising chiefly framboidal, probably pyritic grains. Scanning electron microscopy (SEM) should be used if necessary for better resolution and description of the opaque minerals.	Primary
Iron oxide compounds	<<1	N/A	Rare amorphous by-products of the oxidation of opaque minerals on the surface of the rock core.	Secondary

MICROSCOPICAL DESCRIPTION

The sample was a fine to medium grained bioclastic LIMESTONE, comprising almost entirely calcium carbonate, with trace amounts of opaque minerals. No iron oxide compounds was observed in the thin section, suggesting that the patches observed on the hand specimen were superficial oxidation of the opaque minerals exposed to the element.

The sample exhibited sporadic, unevenly distributed and randomly orientated stylolites comprising abundant opaque minerals.

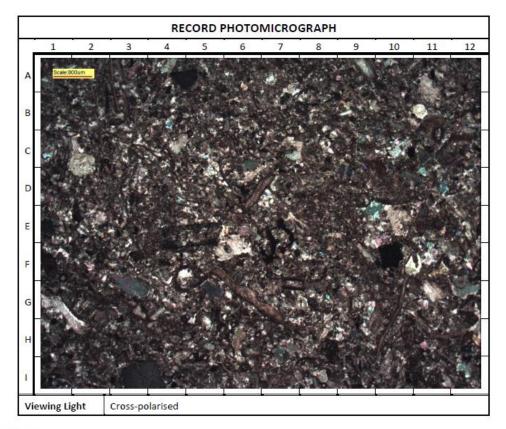
Rare irregular voids up to 100µm across were only observed associated with stylolites.


The void content was visually estimated as being approximately 0%.

The sample was fresh and exhibited Grade I weathering.

Test Report Ref.: 447907 - Page 3 of 8

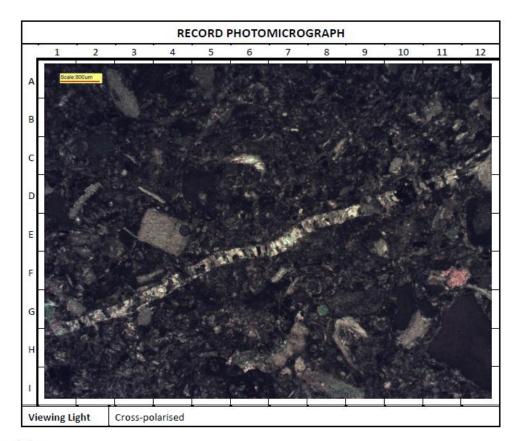
Petrographic Examination Natural Stone- BS EN 12407:2007



Profile view of the sample as received

Test Report Ref.: 447907 - Page 4 of 8

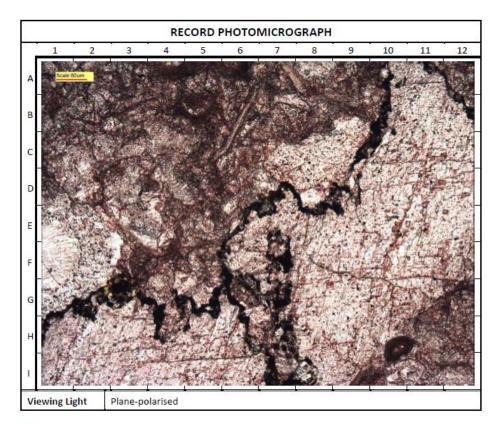
Petrographic Examination Natural Stone- BS EN 12407:2007


Description

View of a section through the sample, showing bioclasts (brown, yellowish grey, pale green: A9, B3, C/D2, D6, G2, G6 and G10), discrete calcite (dark grey (I2/3) cemented by microcrystalline calcite matrix (brown/dusky brown: A8, E8 and H3).

Test Report Ref.: 447907 - Page 5 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007

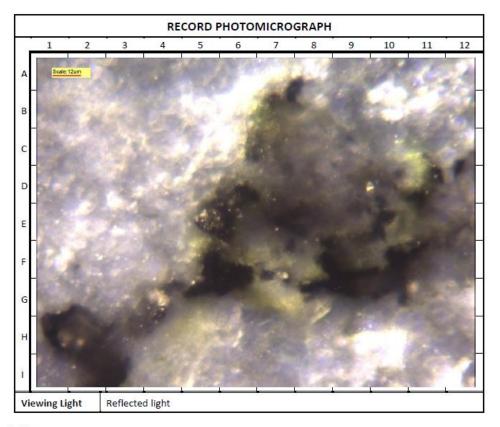

Description

View of a section through the sample, showing calcite vein (C112 to H1)

Test Report Ref.: 447907 - Page 6 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007

Description


View through the stained section of the sample, showing stylolite rich in opaque minerals (black: A10 to H1, A11 to B12 and G6 to I7).

The reddish brown colours (F3) observed throughout the field of view are due to the staining compound used and not due to oxidation.

Test Report Ref.: 447907 - Page 7 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007

Description

Closer view of the section through a stylolite, showing apparent framboidal pyritic grains (black, bras coloured: E5, F6 and G4).

Test Report Ref.: 447907 - Page 8 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007

Glossary of Terms Used in the Descriptions

Proportions	Major: constituent present at a level ≥10%; Minor: constituent present at level ≥2% but <10; Trace: constituent present at <2% level
Frequency	 Rare – only found by thorough searching Sporadic – only occasionally observed during normal examination Common – easily observed during normal examination Frequent – easily observed with minimal examination Abundant – immediately apparent to initial examination
Hardness	 Very soft: can be penetrated easily by a finger Soft: scores with a fingernail Moderately soft: scores using a copper coin Moderately hard: scores easily with a penknife Hard: not easily scored with a penknife Very hard: cannot be scored with a steel point or knife.
Weathering/ alteration	 Grade I (Fresh): Unchanged from original state Grade II (Slightly Weathered): Slight discoloration, slight weakening; Grade III (Moderately Weathered): Considerably weakened, penetrative discoloration, large pieces cannot be broken by hand Grade IV (Highly Weathered): large pieces can be broken by hand, does not readily disaggregate (slake) when dry sample immersed in water Grade V (Completely Weathered): considerably weakened, slakes, original texture apparent; Grade VI (Residual Soil) Soil derived by in-situ weathering but retaining none of the original texture or fabric.
Origin	 Primary constituents: Constituents present within the rock at its formation. Secondary constituents: Constituents formed by the alteration of pre-existing primary constituents or introduced from an external source after the rock was formed
Size	Mega: >60mm; Macro: 2-60mm; Meso: 60µm-2mm; Micro: 2-60µm; Crypto: <2µm; Glassy: without visible crystallinity
Bedding/Layering	Thick: >600mm; Medium: 200-600mm; Thin: 60-200mm; Very thin: 20-60mm
Lamination	Thick: 6-20mm; Thin: 2-6mm; Very thin: 600µm-2mm; Extremely thin: <600µm
Cleavage	Extremely wide: >2mm; Very wide: 600µm-2mm; Wide: 200-600µm; Medium: 60-200µm; Close: 20-60µm; Very close: 6-20µm; Extremely close: <6µm.
Cracks	 Fine microcracks (<1µm wide) Microcracks (1-10µm wide) Fine cracks (10-100µm wide) Cracks (100µm-1mm wide) Large cracks (>1mm wide).
Colour	Description based on geological rock-color chart, produced by Munsell Color, 2009 Revised, 2011 Production.
Limestone Classification Schemes	Folk, R. L. 1959. Practical petrographic classification of limestones. <i>Bull. Am. Ass. Petro. Geol.</i> 43, 1-38. Dunham, R. J. 1962. Classification of carbonate rocks according to depositional texture. In: Classification of Carbonate Rocks
	(Ed. By W. E. Ham), pp. 108-121. Mem. Am. Ass. Petrol. Geol. 1, Tulsa.

Priority Drilling Ltd. Killimor Ballinasloe Co Galway Ireland 8D23036i Date: 6th April 2016 Test Report Ref.: 447934

Page 1 of 9

LABORATORY TEST REPORT

<u>Test Requirements:</u> Petrographic Examination of Natural Stone in accordance with BS EN 12047:2007

Sample details:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S56595 BH01 - 50926 Unknown 18/01/2016 18/03/2016 Depth Top:148.97 Depth Base:149.05 Lackagh Quarry Unknown Client Rock Testing N/A

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The work was carried out by our accredited, competent, sub contracted laboratory.

RESULTS

See Attached

Nick Dumbarton – Assistant Laboratory Manager

Test Report Ref.: 447934 – Page 2 of 9

Petrographic Examination Natural Stone- BS EN 12407:2007

HAND SPECIMEN DESCRIPTION

The sample was a moderately hard, fine to very coarse grained, not macroporous limestone. The sample was anisotropic. The sample exhibited medium grey to greyish black variously thick band/layers, unevenly distributed white bioclastic calcite materials up to 8mm across and a large irregular pyritic material up to approximated 2mm across. The sample also exhibited sporadic, randomly distributed and randomly orientated calcite veins up to <200µm across.

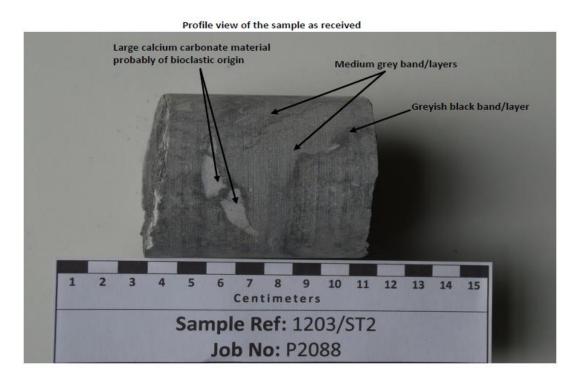
Constituents ¹	Visual Estimated Proportions ² %	Range of Crystal/Grain Size	Petrographic Details	Origin
Calcite	97	Up to 1600μm	Fresh, anhedral to euhedral crystals comprising significant amounts of both microcrystalline calcite (calcite crystals <4μm) and sparry calcite (calcite crystals >4μm), with minor proportion of discrete calcium carbonate grains that appeared to have replaced bioclasts. The bioclasts chiefly comprised both microcrystalline calcite and sparry calcite. The sample was partially stained in accordance with Dickson's method. The result of the staining process suggests that the calcite was chiefly non-ferroan	Primary
Opaque minerals	1-2	Up to 2000μm	Fresh, chiefly anhedral isotropic minerals apparently comprising almost entirely framboidal, probably pyritic grains. Scanning electron microscopy (SEM) should be used if necessary for better resolution and description of the opaque minerals.	Primary
Clay materials	1-2	<4µm	Very fine grained materials associated with abundant microcrystalline calcite, thus beyond the conclusive resolution of the petrographic microscope. This could be investigated further by scanning electron microscopy (SEM).	Primary

MICROSCOPICAL DESCRIPTION

The sample was a fine to very coarse grained bioclastic LIMESTONE, comprising almost entirely calcium carbonate, with trace to minor proportions of opaque minerals, and trace to minor proportions of potentially clay minerals that were beyond the resolution of the petrographic microscope.

The limestone also exhibited abundant intraclasts (apparently reworked limestone fragments probably from nearby sediments).

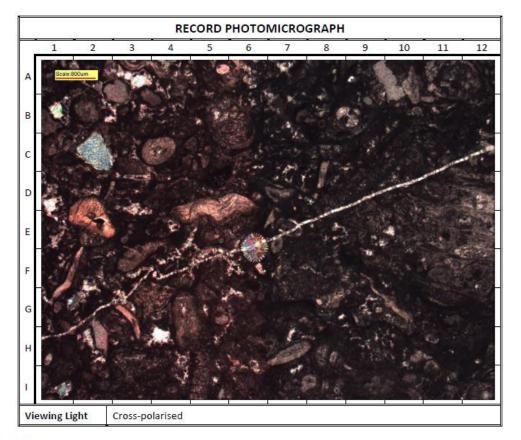
The greyish black bands/layers appeared brecciated as they comprised limestone fragments and discrete calcite grains cemented by very fine grained matrix comprising chiefly microcrystalline calcite, with trace to minor proportions of opaque minerals and possibly trace to minor proportions of clay materials.


No void was observed. The void content was visually estimated as being 0%.

The sample was fresh and exhibited Grade I weathering.

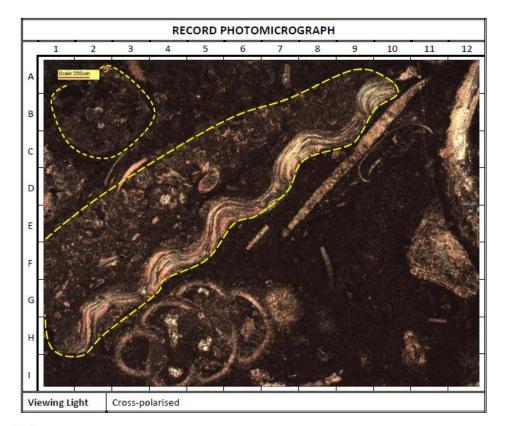
Test Report Ref.: 447934 – Page 3 of 9

Petrographic Examination Natural Stone- BS EN 12407:2007


Profile view of another side of the sample as received

Test Report Ref.: 447934 - Page 4 of 9

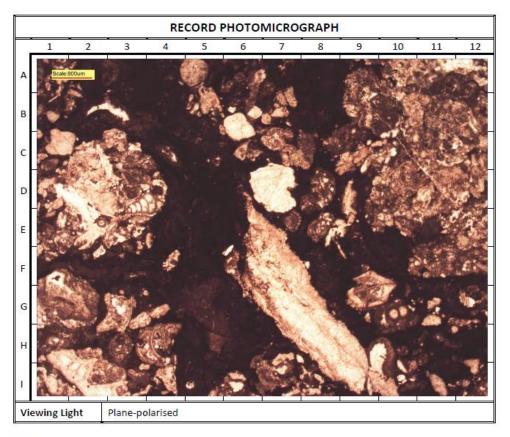
Petrographic Examination Natural Stone- BS EN 12407:2007


Description

View of a section through a part-stained section of the sample, showing bioclasts (pink, pale ink, light brown, purple/green: A3, A11, B5, D5, E6 and E11) and calcite vein (light brown/pale pink/white: C12 to H1).

Test Report Ref.: 447934 – Page 5 of 9

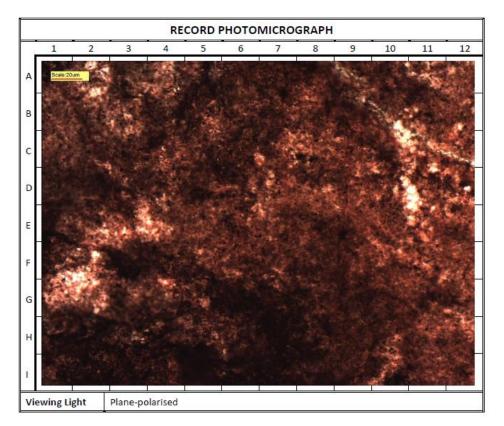
Petrographic Examination Natural Stone- BS EN 12407:2007


Description

View through a typical medium grey section of the sample, showing bioclasts (pale pink, light brown, pale yellow: D3, D5, D7, D8, D12 and H5) cemented by chiefly microcrystalline calcite (brownish grey: E9). An apparent intraclasts are highlighted in yellow.

Test Report Ref.: 447934 – Page 6 of 9

Petrographic Examination Natural Stone- BS EN 12407:2007

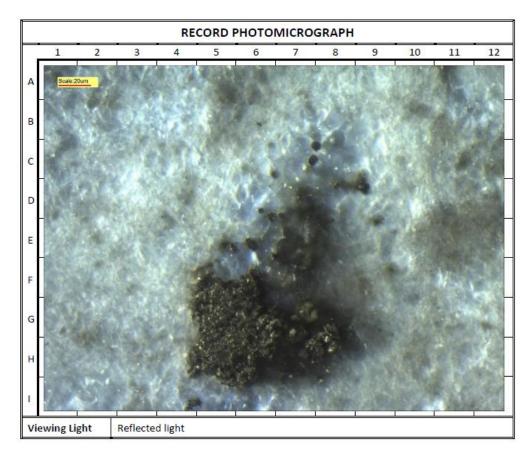

Description

View of a section through a greyish black band/layer, showing apparent limestone fragments (pale pink, light brown, pale yellow: A5, C1, D2, D7, D11, G7 and G9), cemented by very fine grained matrix (dusky brown: A8, E5 and H12).

Test Report Ref.: 447934 – Page 7 of 9

Petrographic Examination Natural Stone- BS EN 12407:2007

Description


Closer view through the matrix of the greyish black section of the sample, showing very fine grained materials beyond the conclusive resolution of the petrographic microscope. Opaque minerals appear black (A5 and E6). The remainder of the field of view appear to comprise both microcrystalline calcite and possibly some clay minerals.

The moderate red colour (D9) observed throughout the photomicrograph are due to the staining compound used and not due to oxidation.

Test Report Ref.: 447934 - Page 8 of 9

Petrographic Examination Natural Stone- BS EN 12407:2007

Description

Closer view of the section through the sample, showing framboidal pyritic grains (brass colour: C7 and G5).

Test Report Ref.: 447934 - Page 9 of 9

Petrographic Examination Natural Stone- BS EN 12407:2007

Glossary of Terms Used in the Descriptions

1	
Proportions	Major: constituent present at a level ≥10%; Minor: constituent present at level ≥2% but <10; Trace: constituent present at <2% level
Frequency	 Rare – only found by thorough searching Sporadic – only occasionally observed during normal examination Common – easily observed during normal examination Frequent – easily observed with minimal examination Abundant – immediately apparent to initial examination
Hardness	 Very soft: can be penetrated easily by a finger Soft: scores with a fingernail Moderately soft: scores using a copper coin Moderately hard: scores easily with a penknife Hard: not easily scored with a penknife Very hard: cannot be scored with a steel point or knife.
Weathering/ alteration	 Grade I (Fresh): Unchanged from original state Grade II (Slightly Weathered): Slight discoloration, slight weakening; Grade III (Moderately Weathered): Considerably weakened, penetrative discoloration, large pieces cannot be broken by hand Grade IV (Highly Weathered): large pieces can be broken by hand, does not readily disaggregate (slake) when dry sample immersed in water Grade V (Completely Weathered): considerably weakened, slakes, original texture apparent; Grade VI (Residual Soil) Soil derived by in-situ weathering but retaining none of the original texture or fabric.
Origin	 Primary constituents: Constituents present within the rock at its formation. Secondary constituents: Constituents formed by the alteration of pre-existing primary constituents or introduced from an external source after the rock was formed
Size	Mega: >60mm; Macro: 2-60mm; Meso: 60µm-2mm; Micro: 2-60µm; Crypto: <2µm; Glassy: without visible crystallinity
Bedding/Layering	Thick: >600mm; Medium: 200-600mm; Thin: 60-200mm; Very thin: 20-60mm
Lamination	Thick: 6-20mm; Thin: 2-6mm; Very thin: 600µm-2mm; Extremely thin: <600µm
Cleavage	Extremely wide: >2mm; Very wide: 600µm-2mm; Wide: 200-600µm; Medium: 60-200µm; Close: 20-60µm; Very close: 6-20µm; Extremely close: <6µm.
Cracks	 Fine microcracks (<1µm wide) Microcracks (1-10µm wide) Fine cracks (10-100µm wide) Cracks (100µm-1mm wide) Large cracks (>1mm wide).
Colour	Description based on geological rock-color chart, produced by Munsell Color, 2009 Revised, 2011 Production.
Limestone Classification Schemes	Folk, R. L. 1959. Practical petrographic classification of limestones. <i>Bull. Am. Ass. Petro. Geol.</i> 43, 1-38. Dunham, R. J. 1962. Classification of carbonate rocks according to depositional texture. In: Classification of Carbonate Rocks (Ed. By W. E. Ham), pp. 108-121. <i>Mem. Am. Ass. Petrol. Geol.</i> 1, Tulsa.

Total Sulphur

Dublin 3 Ireland Date: 16 March 2016 Test Report Ref: STR 447855

Page 1 of 1

Contract: Lackagh Quarry

VAT No: 9D539711

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Total Sulfur Content of an Aggregate Sample in accordance with **BS EN 1744-1 : 2009 : Clause 11**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 48891
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	19/02/2016
Sampling Location:	Depth Top:53.80 Depth Base:453.93
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Testing
Target Specification:	N/A

RESULTS:

Total Sulfur Content as S (%) = 95% Confidence limit*

<0.1 *<*0.06% - *<*0.14%

Comments / Departure from specified Procedure

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Elipsulden

Eric Goulden Technical Manager

Dublin 3 Ireland Date: 16 March 2016 Test Report Ref: STR 447867

Page 1 of 1

Contract: Lackagh Quarry

VAT No: 9D539711

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Total Sulfur Content of an Aggregate Sample in accordance with **BS EN 1744-1 : 2009 : Clause 11**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50859
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:65.40 Depth Base:65.50
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Testing
Target Specification:	N/A

RESULTS:

Total Sulfur Content as S (%) = 95% Confidence limit*

<0.1 *<*0.06% - *<*0.14%

Comments / Departure from specified Procedure

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Elipsulden

Eric Goulden Technical Manager

Date: 16 March 2016 Test Report Ref: STR 447887

Page 1 of 1

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Total Sulfur Content of an Aggregate Sample in accordance with **BS EN 1744-1 : 2009 : Clause 11**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50879
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	19/02/2016
Sampling Location:	Depth Top:91.10 Depth Base:91.20
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Testing
Target Specification:	N/A

RESULTS:

Total Sulfur Content as S (%) = 95% Confidence limit*

<0.1 *<0.06% - <0.14%*

Comments / Departure from specified Procedure

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Elipsulden

Eric Goulden Technical Manager

Dublin 3 Ireland Date: 16 March 2016 Test Report Ref: STR 447937

Page 1 of 1

Contract: Lackagh Quarry

VAT No: 9D539711

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Total Sulfur Content of an Aggregate Sample in accordance with **BS EN 1744-1 : 2009 : Clause 11**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50929
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:152.97 Depth Base:153.04
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Testing
Target Specification:	N/A

RESULTS:

Total Sulfur Content as S (%) = 95% Confidence limit*

<0.1 *<0.06% - <0.14%*

Comments / Departure from specified Procedure

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Elipsulden

Eric Goulden Technical Manager

Dublin 3 Ireland Date: 16 March 2016 Test Report Ref: STR 447965

Page 1 of 1

Contract: Lackagh Quarry

VAT No: 9D539711

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Total Sulfur Content of an Aggregate Sample in accordance with **BS EN 1744-1 : 2009 : Clause 11**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50955
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:193.60 Depth Base:193.68
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Testing
Target Specification:	N/A

RESULTS:

Total Sulfur Content as S (%) = 95% Confidence limit*

<0.1 *<*0.06% - *<*0.14%

Comments / Departure from specified Procedure

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Elipsulden

Eric Goulden Technical Manager

Dublin 3 Ireland Date: 16 March 2016 Test Report Ref: STR 448000

Page 1 of 1

Contract: Lackagh Quarry

VAT No: 9D539711

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Total Sulfur Content of an Aggregate Sample in accordance with **BS EN 1744-1 : 2009 : Clause 11**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56595
Client Ref. No:	BH01 - 50990
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	18/01/2016
Date of Start of Test:	17/02/2016
Sampling Location:	Depth Top:235.64 Depth Base:235.73
Name of Source:	Lackagh Quarry
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Rock Testing
Target Specification:	N/A

RESULTS:

Total Sulfur Content as S (%) = 95% Confidence limit*

<0.1 *<0.06% - <0.14%*

Comments / Departure from specified Procedure

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Elipsulden

Eric Goulden Technical Manager

Dublin 3 Ireland Date: 15 February 2016 Test Report Ref: STR 443067

Page 1 of 1

Contract: Lackagh Quarry

VAT No: 9D539711

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Total Sulfur Content of an Aggregate Sample in accordance with **BS EN 1744-1 : 2009 : Clause 11**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S56158
Client Ref. No:	BH04 - 48954
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	21/12/2015
Sampling Location:	Depth Top: 31.66 Depth Base: 31.7
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Total Sulfur Content as S (%) = 95% Confidence limit*

<0.1 *<*0.06% - *<*0.14%

Comments / Departure from specified Procedure

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Elipsulden

Eric Goulden Technical Manager

VAT No: 9D539711

Dublin 3 Ireland Date: 15 February 2016 Test Report Ref: STR 443131

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

Contract: Lackagh Quarry

To determine the Total Sulfur Content of an Aggregate Sample in accordance with **BS EN 1744-1 : 2009 : Clause 11**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S56158
Client Ref. No:	BH05 - 50715
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	08/12/2015
Date of Start of Test:	21/12/2015
Sampling Location:	Depth Top: 29.09 Depth Base: 29.18
Name of Source:	Lackagh Quarry SI
Method of Sampling:	Unknown
Sampled By:	Client
Material Description:	Core
Target Specification:	N/A

RESULTS:

Total Sulfur Content as S (%) = 95% Confidence limit*

<0.1 *<*0.06% - *<*0.14%

Comments / Departure from specified Procedure

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager

Approved by: - Elipsulden

Eric Goulden Technical Manager

N6 Galway City Transport Project - Phase 3 Ground Investigation - Contract No.2

UCS

Priority Drilling Ltd, Killimor, Ballinasloe, Co. Galway, Ireland Date: 10 March 2016 Test Report Ref: STR 447821a Revision 1

Page 1 of 2

LABORATORY TEST REPORT

No

TEST REQUIREMENTS:

To determine the Uniaxial Compressive Strength in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. : Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification:

S56595 Various Unknown 18/01/2016 18/01/2016 Various Lackagh Quarry Unknown Client Rock Cores N/A

RESULTS:

See attached

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager Approved by: -

Elloulden

Eric Goulden Technical Manager

вн	Core Diameter (mm)	Height/ Diameter Ratio	Uniaxial compressive strength (MPa)	Mode of Failure	EN ISO 14689-1 Term	Water content (%)
BH01 48863	60.7	3.5:1	97	Ν	Strong	0.3
Bh01 48870	60.8	3.5:1	59	Ν	Strong	0.2
BH01 48873	60.7	3.5:1	73	N	Strong	0.1
BH01 48878	60.7	3:1	100	Ν	Strong	0.1
BH01 48883	60.7	3:1	69	Ν	Strong	0.3
BH01 48887	60.7	3:1	83	Ν	Strong	0.2
BH01 50943	60.8	3:1	76	N	Strong	0.1
BH01 48895	61	3.4:1	138	N	Very Strong	0.3
BH01 48900	60.8	2.5:1	65	N	Strong	0.1
BH01 50863	60.6	1.7:1	104	N	Very Strong	0.2
BH01 50873	60.7	3:1	62	N	Strong	0.2
BH01 50884	60.6	3:1	76	N	Strong	0.2
BH01 50894	60.7	3.4:1	107	N	Very Strong	0.2
BH01 50902	60.7	3:1	104	N	Very Strong	0.1
BH01 50909	60.8	2.1:1	79	N	Strong	0.2
Bh01 50915	60.8	3.1:1	110	N	Very Strong	0.3
Bh01 50924	60.7	1.4:1	100	N	Very Strong	0.2
BH01 50934	60.7	3.1:1	86	N	Strong	0.4
BH01 50938	60.6	3.4:1	83	N	Strong	0.2
BH01 50945	60.8	3.4:1	86	N	Strong	0.2
BH01 50952	60.6	3.2:1	97	Ν	Strong	0.5
BH01 50958	60.8	3.2:1	114	Ν	Very Strong	0.3
BH01 50963	60.6	3.1:	132	Ν	Very Strong	0.2
BH01 50968	60.6	3.3:1	111	Ν	Very Strong	0.1
BH01 50971	60.5	3.5:1	52	Ν	Strong	0.3
BH01 50980	60.5	2.8:1	77	Ν	Strong	0.2
BH01 50986	60.5	3:1	111	Ν	Very Strong	0.4
BH01 50991	60.6	3.5:1	80	N	Strong	0.2
BH01 50992	60.6	2.3:1	76	N	Strong	0.2
BH01 50994	60.6	3:1	118	Ν	Very Strong	0.2
BH01 50998	60.7	2.1:1	121	Ν	Very Strong	0.3
BH01 51002 Trefelin Bangor Gv	60.4 vynedd LL57 4LH	3.3:1 T +44 (0)1248 355269 F	143 +44 (0)1248 351563 E posti	N naster@celter	Very Strong	0.2 Itest.com

_	BH01 51004	60.4	2.6:	66	N	Strong	0.2
	BH01 51007	60.8	2.5:1	83	Ν	Strong	0.3
	BH01 51010	60.6	2.5:1	90	Ν	Strong	0.3
	BH01 51011	60.3	2.9:1	91	Ν	Strong	0.2

Comments

- 1) The uniaxial compressive strength was carried out in accordance with ISRM guidelines.
- 2) Stress Rate: 0.7Mpa/s.

³⁾

EN ISO 14689-1 : 2003 Rock Strength Terms		
Compressive Strength mpa	Term	
<1.0	Extremely Weak	
1 to 5	Very Weak	
5 to 25	Weak	
25 to 50	Meduim Strong	
50 to 100	Strong	
100 to 250	Very Strong	
> 250	Extremely Strong	

Date: 21 December 2015 Test Report Ref: STR 443020

Page 1 of 2

Dublin 3 Ireland VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Uniaxial Compressive Strength in accordance with **ISRM Guidelines**

SAMPLE DETAILS:

No
S56158
Various
Unknown
08/12/2015
08/12/2015
Various
Lackagh Quarry SI
Unknown
Client
Core
N/A

RESULTS:

See attached

Certificate Prepared by:-

Mathew Sayer Assistant Laboratory Manager Approved by: -

Ellpulden

Eric Goulden Technical Manager

вн	Core Diameter (mm)	Height/ Diameter Ratio	Uniaxial compressive strength (MPa)	Mode of Failure	EN ISO 14689-1 Term	Water content (%)
BH04 48908	82	2.6:1	76	Ν	Strong	0.1
BH04 48912	82.3	1.9:1	86	Ν	Strong	0.3
BH04 48921	82.3	1.5:1	55	Ν	Strong	0.1
BH04 48927	82.1	1.6:1	53	Ν	Strong	0.2
BH04 48931	82.2	2.6:1	111	N	Very Strong	0.1
BH04 48933	82	2.1:1	91	N	Strong	0.2
BH04 48950	82	2.5:1	76	N	Strong	0.2
BH04 48957	82	2:1	78	N	Strong	0.3
BH04 48963	82.2	2.4:1	92	N	Strong	0.1
BH05 48982	82	1.8:1	91	N	Strong	0.2
BH05 48986	81.5	2.6:1	86	N	Strong	0.4
BH05 48991	81.4	2.5:1	94	N	Strong	0.1
BH05 48994	82	1.9:1	72	N	Strong	0.2
BH05 48998	82.2	2.6:1	77	N	Strong	0.2
BH05 50711	78.5	1.8:1	79	N	Strong	0.2
BH05 50729	79	2.5:1	116	N	Very Strong	0.3
BH05 50731	81.4	2.6:1	51	Ν	Strong	0.1
BH05 50733	81.6	2.1:1	54	N	Strong	0.2
BH05 50737	82	1.5:1	131	N	Very Strong	0.2

Test Report Ref: STR 443020 - Page 2 of 2

Comments

1) The uniaxial compressive strength was carried out in accordance with ISRM guidelines.

- 2) Stress Rate: 0.7Mpa/s.
- 3)

EN ISO 14689-1 : 2003 Rock Strength Terms		
Compressive Strength mpa	Term	
<1.0	Extremely Weak	
1 to 5	Very Weak	
5 to 25	Weak	
25 to 50	Meduim Strong	
50 to 100	Strong	
100 to 250	Very Strong	
> 250	Extremely Strong	

Water Tests

Independent Analytical Supplies

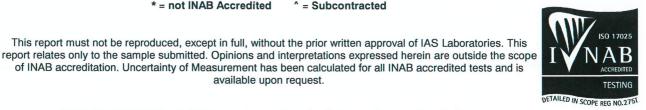
Test Report

Lab Report Number:	2165101	Analysis Number:	99A/89470
Customer ID:	BRG.L1	Analysis Type:	Misc. Tests (99A)
Contact Name:	DAVID BLANEY	Delivery By:	An Post
Company Name:	BRG LTD	Sample Card Number:	AAAQ1194/3
Address:	8B UNIT 3	Sample Condition:	Acceptable
	ATHY BUSINESS CAMPUS		
	ATHY		
	CO KILDARE		
Sample Type:	Ground Water	Date Sample Received:	15/03/2016
Sample Reference:	GROUND WATER	Date Analysis Commenced:	15/03/2016
Sample Description:	BH-04	Date Certificate Issued:	29/03/2016

Parameter	Method	Result	Unit
Calcium	ICP-MS	82.9	mg/l
Chloride	Konelab Aquakem SOP 2065	32.10	mg/l
Potassium	ICP-MS	0.94	mg/l
Magnesium	ICP-MS	2.50	mg/l
Sodium	ICP-MS	17.1	mg/l
Nitrite	Konelab Aquakem SOP 2059	<0.03	mg/I NO2
Sulphate	Konelab Aquakem SOP 2062	6.26	mg/l SO4

Signed:

w mecall


Date:

29/03/2016

Wendy McCall - Laboratory Manager

* = not INAB Accredited

^ = Subcontracted

IAS LABORATORIES, Unit 4 Bagenalstown Bus. Park, Bagenalstown, Co. Carlow,

This report must not be reproduced, except in full, without the prior written approval of IAS Laboratories. This

of INAB accreditation. Uncertainty of Measurement has been calculated for all INAB accredited tests and is available upon request.

4070 Issue 3

Phone: 00353 59 9721022 Fax: 00353 59 9721897 Email: ias@iaslabs.ie Web: www.iaslabs.ie

Test Report

Lab Report Number:	2165102	Analysis Number:	99A/89471
Customer ID:	BRG.L1	Analysis Type:	Misc. Tests (99A)
Contact Name:	DAVID BLANEY	Delivery By:	An Post
Company Name:	BRG LTD	Sample Card Number:	AAAQ1194/3
Address:	8B UNIT 3	Sample Condition:	Acceptable
	ATHY BUSINESS CAMPUS		
	ATHY		
	CO KILDARE		
Sample Type:	Ground Water	Date Sample Received:	15/03/2016
Sample Reference:	GROUND WATER	Date Analysis Commenced:	15/03/2016
Sample Description:	BH-05	Date Certificate Issued:	29/03/2016

Parameter	Method	Result	Unit
Calcium	ICP-MS	92.6	mg/l
Chloride	Konelab Aquakem SOP 2065	25.38	mg/l
Potassium	ICP-MS	6.26	mg/l
Magnesium	ICP-MS	2.98	mg/l
Sodium	ICP-MS	14.4	mg/l
Nitrite	Konelab Aquakem SOP 2059	0.03	mg/I NO2
Sulphate	Konelab Aquakem SOP 2062	15.41	mg/I SO4

Signed:

w mecall

Date:

29/03/2016

Wendy McCall - Laboratory Manager

* = not INAB Accredited

^ = Subcontracted

report relates only to the sample submitted. Opinions and interpretations expressed herein are outside the scope of INAB accreditation. Uncertainty of Measurement has been calculated for all INAB accredited tests and is available upon request.

This report must not be reproduced, except in full, without the prior written approval of IAS Laboratories. This

IAS LABORATORIES, Unit 4 Bagenalstown Bus. Park, Bagenalstown, Co. Carlow, Phone: 00353 59 9721022 Fax: 00353 59 9721897 Email: ias@iaslabs.ie Web: www.iaslabs.ie

Independent Analytical Supplies

Test Report

Lab Report Number:	2165103	Analysis Number:	99A/89472
Customer ID:	BRG.L1	Analysis Type:	Misc. Tests (99A)
Contact Name:	DAVID BLANEY	Delivery By:	An Post
Company Name:	BRG LTD	Sample Card Number:	AAAQ1194/3
Address:	8B UNIT 3	Sample Condition:	Acceptable
	ATHY BUSINESS CAMPUS		
	ATHY		
	CO KILDARE		
Sample Type:	Ground Water	Date Sample Received:	15/03/2016
Sample Reference:	GROUND WATER	Date Analysis Commenced:	15/03/2016
Sample Description:	BH-06	Date Certificate Issued:	29/03/2016

Parameter	Method	Result	Unit
Calcium	ICP-MS	430.1	mg/l
Chloride	Konelab Aquakem SOP 2065	152.22	mg/l
Potassium	ICP-MS	39.3	mg/l
Magnesium	ICP-MS	<0.5	mg/l
Sodium	ICP-MS	306.1	mg/l
Nitrite	Konelab Aquakem SOP 2059	1.02	mg/I NO2
Sulphate	Konelab Aquakem SOP 2062	36.32	mg/I SO4

Signed:

mecall w

Date:

29/03/2016

Wendy McCall - Laboratory Manager

* = not INAB Accredited ^ = Su

^ = Subcontracted

This report must not be reproduced, except in full, without the prior written approval of IAS Laboratories. This report relates only to the sample submitted. Opinions and interpretations expressed herein are outside the scope of INAB accreditation. Uncertainty of Measurement has been calculated for all INAB accredited tests and is available upon request.

IAS LABORATORIES, Unit 4 Bagenalstown Bus. Park, Bagenalstown, Co. Carlow, Phone: 00353 59 9721022 Fax: 00353 59 9721897 Email: ias@iaslabs.ie Web: www.iaslabs.ie

APPENDIX VIII

Well Number:BH-04

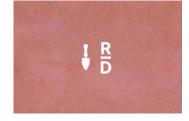
Project Details

Project No.:	Lackagh	Location (GPS):	530150 728400
Date:	12-3-16	Sampler:	Ronan Doyle

Sample Details

Well No.:	BH-04	Measurement Point:	TOR
Stick Up:		T.O.C Elevation:	
Water Level:	19.65m	Well Depth:	33.06m
Head:	13.41m	Well Diameter:	
Volume in Well (L):		Volume Purged (L):	Pumped for 1 hr
Decon. Procedure:		Bailer Type:	Watterra Pump
Containers Used:			

Field Parameters


Observed Colour:	Brown Tint	Odour:	None	
Temperature (°C):	10.5C	Conductivity (µS):	295	
pH:	7.47	pHMV:	-58mv	ORP=231mv

Comments

DO=0.21mg/l 1.8%

Ronan Doyle Monitoring Solutions,

Castlebar Road, Ballinrobe, County Mayo.

Well Number:BH-05

Project Details

Project No.:	Lackagh	Location (GPS):	530186 728378
Date:	12-3-16	Sampler:	Ronan Doyle

Sample Details

Well No.:	BH-05	Measurement Point:	TOR
Stick Up:		T.O.C Elevation:	
Water Level:	21.70m	Well Depth:	39.53m
Head:	17.83m	Well Diameter:	
Volume in Well (L):		Volume Purged (L):	Pumped for 1 hr
Decon. Procedure:		Bailer Type:	Watterra Pump
Containers Used:			

Field Parameters

Observed Colour:	Brown Tint	Odour:	None
Temperature (°C):	10.5C	Conductivity (µS):	420
pH:	7.77	pHMV:	-74.8mv
			ORP=216.9mv

Comments

DO=0.8mg/l 9.2%

Ronan Doyle Monitoring Solutions,

↓ R D

Castlebar Road, Ballinrobe, County Mayo.

Well Number:BH-06

Project Details

Project No.:	Lackagh	Location (GPS):	530125 728383
Date:	12-3-16	Sampler:	Ronan Doyle

Sample Details

Well No.:	BH-06	Measurement Point:	TOR
Stick Up:		T.O.C Elevation:	
Water Level:	4.02m	Well Depth:	7.48m
Head:	3.46m	Well Diameter:	
Volume in Well (L):		Volume Purged (L):	Pumped for 30min
Decon. Procedure:		Bailer Type:	Watterra Pump
Containers Used:			

Field Parameters

Observed Colour:	Milky brown	Odour:	None
Temperature (°C):	9.8C	Conductivity (µS):	6187
pH:	12.53	pHMV:	-333mv
			ORP=51.7mv

Comments

DO=0.8mg/l 9.4%

Ronan Doyle Monitoring Solutions,

↓ R D

Castlebar Road, Ballinrobe, County Mayo.

APPENDIX IX

Borehole ID	<u>BH5</u>
Water Level Start	19.45m
Water volume inserted	215 ltrs

Time (min)	Water Level (m)
1	18.1
1.5	18.52
2	18.82
2.5	19
3	19.14
3.5	19.22
4	19.26
4.5	19.29
5	19.31
5.5	19.32
6	19.33
8	19.35
11	19.38
14	19.39
18	19.4
22	19.405
26	19.41
30	19.41
34	19.415
40	19.42

Borehole ID	<u>BH5</u>
Water Level Start	19.42m
Water volume inserted	1000 ltrs

Time (min)	Water Level (m)	Comments
1	17.62	
1.5	18.22	
2	18.51	
2.5	18.74	
3	18.93	
3.5	19.04	
4	19.11	
4.5	19.17	
5	19.21	
5.5	19.24	
6	19.26	
6.5	19.28	
7.5	19.29	
9	19.31	
12	19.33	
14	19.335	
17	19.34	
20	19.345	
24	19.345	
30	19.35	
40	19.34	Could feel material in the hole
		test stopped - driller reports
		clearing clay after test in oreder
		to install piezometer.

APPENDIX X

BH04 - Depth		Test 18/12	2/15		Water D	epth	Start Time min	16.8m	Finish	16.8m								
Тор		ttom Mi	idpoint Packer	Pressure (psi) Pressu	e (psi) Flow (lit	res)	Time min		2 :	3 4	5	→ 6	7	8	9	10		
	28	30	29	175	49		59	9 11	3 168	3 225	282	343			518	579	Total	
							59	9 5	7 50	5 56	56	57	57	57	58	58	l/m	Unable to continue at
	24	26	25	175	50		18.	5 3	5 52			103	121	138	155.6		Total	
							19								17		l/m	
					65		29								267		Total	
					- ↓		29								30		l/m	
					84		44								410		Total	
							44								46		l/m	
					65		32								354		Total	
					50		32	_							39		l/m	
					50		34								303 34		Total	
_	21	23	22	175	40		6								533		l/m Total	
	21	23	22	175	40		6								533		l otal I/m	
					50		6								576		Total	
					50		6								64		I/m	Unable to continue at
	18	20	19	160	40		20	-							214		Total	
	10	20	20	100	10		20								24		I/m	
					60		3								289		Total	
							3								32		I/m	
					80		3	7 7	5 11	3 152	190	228	267	306	345	383	Total	
							3	7 3	8 38	3 38	38	38	38	38	38		l/m	
					60		33	3 6	6 99	9 132	165	198	231	264	297	328	Total	
							33	3 3	3 33	3 33	33	33	33	33	33	33	l/m	
					40		2								224		Total	
							2	5 2	5 2!	5 25	25	25	25	25	25	25	l/m	

BH05 - P	acker Te	st 6/	1/16			Water Dept	Start	19.26m	Finish	19.2							
Depth							Time minut					\rightarrow					
Тор	Botto			Packer Pressure (psi)			1	2			5	6			9	10	
3	36	38	37	160	30)	58.9	117.1		234.4	292.9	350.1	408.7	466.7	524.9	581.7	Tota
				59	59		59	59	58	58	58	58	58	l/m			
					45	i	70.1	139.9	209.1	279.1	348.7	417.9	485.1	554.6	620.5	686.1	Tota
							70	70		70	70	70	69	69	69	69	l/m
					60)	76.8	153.7	231.2	304.4	383.7	461.5	537.7	613.7	691.6	768.4	Tota
							77	77		76	77	77	77	77	77	77	l/m
					45	i	73	145.7	212.8	278.1	351.5	421.4	493.3	564.4	634.6	705.9	Tota
							73	73		70	70	70	70	71	71	71	l/m
					30)	64.2	128.6		256.3	319.1	383.6	448.5	513.7	576.7	641.5	Tota
							59	59		59	59	58	58	58	58	58	l/m
	30	32	31	175	30)	54.2	110.3	166.4	222.2	278.7	335.7	392.4	448.1	505.2	561.7	Tota
					4.5		54	55		56	56	56	56	56	56	56	l/m
					45	•	67.3	135.1	204.1	273.5	342.4	411.7	481.2	530.4	619.3	688.1	Tota
							67	68		68	68	69	69	66	69	69	l/m
					60	60	78.7	155.8		311.7 78	390.1 78	468.4 78	546.7 78	633.5 79	701.3 78	779.4	Tota
					45		79	78								78	l/m
					45	•	69.7 70	139.7 70	209.6 70	286.5 72	346.5 69	414.5 69	481.7 69	550.7 69	621.8 69	693 69	Tota
					30		61.1	122.4	184.7	247.5	309.7	372.5	435.1	498.3	563.5	626.7	l/m
					50	,	61.1	61	62	62	509.7 62	62	455.1	498.3	63	63	Tota
	24	27	25.5	175	30	<u> </u>	54.1	111.4	166.5	222.3	277	332.4	387.4	462.1	497.1	551.7	l/m
4	24	27	25.5	1/5	50	,	54.1	56		56	55	552.4	55	462.1	497.1	551.7	Tota I/m
					45		67.1	135.4	200.4	268.2	335.3	402.1	468.3	535.3	602.7	667.1	Tota
							67	68		67	67	67	67	67	67	67	l/m
					60	1	77.3	153.7	231.2	308.9	385.7	463.7	540.1	617.5	695	772.6	Tota
							77	77		77	77	77	77	77	77	77	l/m
					45		65.6	130.5	196.3	261.1	326.7	391.6	457.5	512.9	587.2	652.5	Tota
							66	65		65	65	65	65	64	65	65	l/m
					30)	56.9	112.5	167.7	223.5	279.4	335.2	390.1	446	501.7	557.1	Tota
							57	56		56	56	56	56	56	56	56	l/m
-	20	23	21.5	175	30)	54.2	108.5	162	216.7	270.3	324.5	378	421.7	480	539	Tota
							54	54		54	54	54	54	53	53	54	l/m
					45	i	65.6	131.8		262.5	328.3	394.5	459.8	524.7	590.3	655.7	, Tota
							66	66		66	66	66	66	66	66	66	l/m
					60)	77.1	154.1	230.4	306.9	383.7	459.7	536.2	611.9	688.5	764.1	Tota
							77	77	77	77	77	77	77	76	77	76	l/m
					45	i	67.7	135.2	203.1	271.4	337.9	403.3	468.2	530.7	592.8	656.7	Tota
							68	68	68	68	68	67	67	66	66	66	l/m
					30)	57.7	115.4	173.2	230.8	287.1	342.9	399.1	455.5	512.5	567.1	Tota
							58	58	58	58	57	57	57	57	57	57	l/m

APPENDIX XI

	BH3	BH4	BH5	BH6
Elavation	26.256	32.167	34.138	30.799

Date	BH3 bgl	BH3 aod	BH4 bgl	BH4 aod	BH5 bgl	BH5 aod	BH6 bgl	BH6 aod	Comments
08/11/2015					1.31	32.83			Hole at deth of 3.15m
09/11/2015					Dry				Hole at deth of 7.4m
12/11/2015			5.34	26.827					Morning
12/11/2015			Dry						Evening
13/11/2015			17.46	14.707					Rods in hole
13/11/2015	0.65	25.606							Hole at 5.3m. Rods in Hole
16/11/2015	0.11	26.146							Hole at 5.3m. Rods in Hole
17/11/2015	7.51	18.746							Hole at 25.2m. Rods in Hole, Casing to 15m
18/11/2015	6.5	19.756							Hole at 25.2m. Rods in Hole, Casing to 15m
18/11/2015			15.76	16.407					Rods to EOH 35.0m
18/11/2015					17.69	16.45			Rods to EOH 40.3m
21/11/2015	7.5	18.756							Hole at 25.2m. Rods in Hole, Casing to 21m
21/11/2015			17.52	14.647					Rods to EOH 35.0m
21/11/2015					19.5	14.64			Rods to EOH 40.3m
23/11/2015	9	17.256							Hole at 50m. Rods in Hole, Casing to 21m
23/11/2015			18.79	13.377					Rods to EOH 35.0m
23/11/2015					20.56	13.58			Rods to EOH 40.3m
24/11/2015	8.5	17.756							Hole at 57.15m. Rods in Hole, Casing to 21m
24/11/2015			18.84	13.327					Rods to EOH 35.0m
24/11/2015					20.58	13.56			Rods to EOH 40.3m
25/11/2015	12	14.256							Hole at 65.78m. Rods in Hole, Casing to 21m
25/11/2015			18.92	13.247					Rods to EOH 35.0m
25/11/2015					20.72	13.42			Rods to EOH 40.3m
26/11/2015	13.21	13.046							Hole at 79.54m. Rods in Hole, Casing to 50m
26/11/2015			19.04	13.127					Rods to EOH 35.0m
26/11/2015					20.86	13.28			Rods to EOH 40.3m
02/12/2015	12.38	13.876							Hole at 104.95m. Rods in Hole, Casing to 50m
02/12/2015			16.02	16.147					Rods to EOH 35.0m
02/12/2015					17.77	16.37			Rods to EOH 40.3m

08/12/2015	16.14	16.027					Rods to EOH 35.0m
09/12/2015			17.33	16.81			Rods to EOH 40.3m
10/12/2015	15.47	16.697					Rods to EOH 35.0m
10/12/2015			16.98	17.16			Rods to EOH 40.3m
11/12/2015	17.56	14.607					Rods to EOH 35.0m
11/12/2015			16.99	17.15			Rods to EOH 40.3m
14/12/2015	15.65	16.517					Rods to EOH 35.0m
14/12/2015			15.49	18.65			Rods to EOH 40.3m
15/12/2015	16.48	15.687					Rods to EOH 35.0m
15/12/2015			15.51	18.63			Rods to EOH 40.3m
15/12/2015					15.6	15.199	Hole at deth of 45m Rods in hole
17/12/2015	16.87	15.297					Rods to EOH 35.0m
17/12/2015			15.58	18.56			Rods to EOH 40.3m
04/01/2016					2.81	27.989	Piezometer Installed
04/01/2016			14.46	19.68			Rods to EOH 40.3m
05/01/2016					2.83	27.969	Piezometer Installed
05/01/2016			14.68	19.46			Rods to EOH 40.3m
05/01/2016	17.88	14.287					Rods out of hole
06/01/2016			19.45	14.69			Rods out of hole
08/01/2016	16.46	15.707			3.39	27.409	Piezometer Installed
11/01/2016	16.43	15.737	17.48	16.658	3.05	27.749	Piezometer Installed
11/03/2016	18.96	13.207	20.86	13.278	3.59	27.209	Piezometer Installed

aod - Above Ordnance Datum (Sea Level)